1
|
Robinson RL, Fisk AT, Crevecoeur S. Temporal and Depth-Driven Variability of Pelagic Bacterial Communities in Lake Erie: Biofilm and Plankton Dynamics. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70079. [PMID: 40116065 PMCID: PMC11926571 DOI: 10.1111/1758-2229.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/23/2025]
Abstract
Despite constituting an important component of freshwater ecosystems, biofilm assemblages have remained relatively understudied compared to plankton, especially in freshwater systems such as the western basin of Lake Erie (WBLE). This study therefore aimed to elucidate temporal and vertical shifts of microbial communities of planktonic and biofilm growth on artificial substrates in the WBLE water column at discrete depths, investigating the overlap of shared taxa between community types. Sequencing of the 16S rRNA gene revealed concurrent biofilm-plankton samples shared a low percentage (~10%) of amplicon sequence variants (ASVs) indicating distinct communities between free-living and substrate-attached bacteria. Plankton communities did not significantly differ between surface and bottom depths (1 and 8 m), whereas biofilm communities differed between upper (1-4 m) and lower (5-8 m) water columns. Temporal variation in community composition was observed in biofilm, with early periods (June-July) showing significant dissimilarity followed by compositional convergence in late summer onwards (August-October). With the expansion of artificial infrastructure in aquatic systems, there is novel substrate material to observe spatiotemporal patterns of microbial colonisation throughout the pelagic zone. These results demonstrate the complexity of bacterial biofilm communities from plankton in freshwater, providing insight into microbial assembly through temporal succession and across depth.
Collapse
Affiliation(s)
| | - Aaron T. Fisk
- School of the EnvironmentUniversity of WindsorWindsorOntarioCanada
| | - Sophie Crevecoeur
- Environment and Climate Change CanadaCanada Centre for Inland WatersBurlingtonOntarioCanada
| |
Collapse
|
2
|
Brenes-Guillén L, Vidaurre-Barahona D, Avilés-Vargas L, Castro-Gutierrez V, Gómez-Ramírez E, González-Sánchez K, Mora-López M, Umaña-Villalobos G, Uribe-Lorío L, Hassard F. First insights into the prokaryotic community structure of Lake Cote, Costa Rica: Influence on nutrient cycling. Front Microbiol 2022; 13:941897. [PMID: 36262328 PMCID: PMC9574093 DOI: 10.3389/fmicb.2022.941897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Prokaryotic diversity in lakes has been studied for many years mainly focusing on community structure and how the bacterial assemblages are driven by physicochemical conditions such as temperature, oxygen, and nutrients. However, little is known about how the composition and function of the prokaryotic community changes upon lake stratification. To elucidate this, we studied Lake Cote in Costa Rica determining prokaryotic diversity and community structure in conjunction with physicochemistry along vertical gradients during stratification and mixing periods. Of the parameters measured, ammonium, oxygen, and temperature, in that order, were the main determinants driving the variability in the prokaryotic community structure of the lake. Distinct stratification of Lake Cote occurred (March 2018) and the community diversity was compared to a period of complete mixing (March 2019). The microbial community analysis indicated that stratification significantly altered the bacterial composition in the epi-meta- and hypolimnion. During stratification, the Deltaproteobacteria, Chloroflexi, Bacteroidetes, Nitrospirae, and Euryarchaeota were dominant in the hypolimnion yet largely absent in surface layers. Among these taxa, strict or facultative anaerobic bacteria were likely contributing to the lake nitrogen biogeochemical cycling, consistent with measurements of inorganic nitrogen measurements and microbial functional abundance predictions. In general, during both sampling events, a higher abundance of Alphaproteobacteria, Betaproteobacteria, Actinobacteria, and Cyanobacteria was found in the oxygenated layers. Lake Cote had a unique bacterial diversity, with 80% of Amplicon Sequence Variant (ASV) recovered similar to unclassified/uncultured strains and exhibits archetypal shallow lake physicochemical but not microbial fluctuations worthy of further investigation. This study provides an example of lake hydrodynamics impacts to microbial community and their function in Central American lakes with implications for other shallow, upland, and oligotrophic lake systems.
Collapse
Affiliation(s)
- Laura Brenes-Guillén
- Cellular and Molecular Biology Research Center, University of Costa Rica, San José, Costa Rica
| | | | - Lidia Avilés-Vargas
- Research Center in Sciences of the Sea and Limnology, University of Costa Rica, San José, Costa Rica
| | | | - Eddy Gómez-Ramírez
- Research Center in Sciences of the Sea and Limnology, University of Costa Rica, San José, Costa Rica
| | - Kaylen González-Sánchez
- Research Center in Sciences of the Sea and Limnology, University of Costa Rica, San José, Costa Rica
| | - Marielos Mora-López
- Cellular and Molecular Biology Research Center, University of Costa Rica, San José, Costa Rica
| | - Gerardo Umaña-Villalobos
- Research Center in Sciences of the Sea and Limnology, University of Costa Rica, San José, Costa Rica
| | - Lorena Uribe-Lorío
- Cellular and Molecular Biology Research Center, University of Costa Rica, San José, Costa Rica
| | - Francis Hassard
- Cranfield Water Science Institute, Cranfield University, Cranfield, United Kingdom
- Institute for Nanotechnology and Water Sustainability, University of South Africa, Johannesburg, South Africa
- *Correspondence: Francis Hassard,
| |
Collapse
|