1
|
Acharyya S, Majumder S, Nandi S, Ghosh A, Saha S, Bhattacharya M. Uncovering mercury accumulation and the potential for bacterial bioremediation in response to contamination in the Singalila National Park. Sci Rep 2025; 15:3664. [PMID: 39881141 PMCID: PMC11779926 DOI: 10.1038/s41598-024-81927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/30/2024] [Indexed: 01/31/2025] Open
Abstract
Several recent investigations into montane regions have reported on excess mercury accumulation in high-altitude forest ecosystems. This study explored the Singalila National Park, located on the Singalila ridge of the Eastern Himalayas, revealing substantial mercury contamination. Particular focus was on Sandakphu (3636 m), the highest peak in West Bengal, India. It harboured 6.77 ± 0.01 mg/kg of total mercury in its topsoil. Further evidence was provided by accumulation in leaves (0.040 ± 0.01 mg/kg), and roots (0.150 ± 0.008 mg/kg) of local vegetation, litterfall (0.234 ± 0.019 mg/kg), mosses (0.367 ± 0.043 mg/kg), surface water from local lakes and waterbodies (0.010 ± 0.005 mg/l), fresh snow (0.014 ± 0.004 mg/l), and sleet (0.019 ± 0.009 mg/l). Samples from other points of varying elevation in the park also demonstrated contamination. The soil displayed a range of 0.068-5.28 mg/kg, while the mean concentration in leaves was 0.153 ± 0.105 mg/kg, roots was 0.106 ± 0.054 mg/kg, and leaf litter was 0.240 ± 0.112 mg/kg. Additionally, the microbial consortia isolated from the contaminated soil displayed a high tolerance to mercuric chloride, presumably gained through repeated and consistent exposure. Four high tolerance bacterial strains, MTS2C, MTS3A, MTS4B and MTS6A, were further characterized for potential use in bioremediation strategies. Their mercury removal capacities were determined to be 82.35%, 75.21%, 61.95%, and 37.47%, respectively. Overall, the findings presented provide evidence for a highly contaminated environment in the Singalila National Park, that poses significant ecological risk to the flora, fauna and local inhabitants of this biodiversity hotspot. This research also highlights the need for further exploration and monitoring of the Eastern Himalayas for its role as a sink for atmospheric mercury.
Collapse
Affiliation(s)
- Sukanya Acharyya
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, West Bengal, India
| | - Soumya Majumder
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, West Bengal, India
| | - Sudeshna Nandi
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, West Bengal, India
| | - Arindam Ghosh
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, West Bengal, India
| | - Sumedha Saha
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, West Bengal, India
| | - Malay Bhattacharya
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, West Bengal, India.
| |
Collapse
|
2
|
Sanz-Sáez I, Bravo AG, Ferri M, Carreras JM, Sánchez O, Sebastian M, Ruiz-González C, Capo E, Duarte CM, Gasol JM, Sánchez P, Acinas SG. Microorganisms Involved in Methylmercury Demethylation and Mercury Reduction are Widely Distributed and Active in the Bathypelagic Deep Ocean Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13795-13807. [PMID: 39046290 PMCID: PMC11308531 DOI: 10.1021/acs.est.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
The ocean's mercury (Hg) content has tripled due to anthropogenic activities, and although the dark ocean (>200 m) has become an important Hg reservoir, concentrations of the toxic and bioaccumulative methylmercury (MeHg) are low and therefore very difficult to measure. As a consequence, the current understanding of the Hg cycle in the deep ocean is severely data-limited, and the factors controlling MeHg, as well as its transformation rates, remain largely unknown. By analyzing 52 globally distributed bathypelagic deep-ocean metagenomes and 26 new metatranscriptomes from the Malaspina Expedition, our study reveals the widespread distribution and expression of bacterial-coding genes merA and merB in the global bathypelagic ocean (∼4000 m depth). These genes, associated with HgII reduction and MeHg demethylation, respectively, are particularly prevalent within the particle-attached fraction. Moreover, our results indicate that water mass age and the organic matter composition shaped the structure of the communities harboring merA and merB genes living in different particle size fractions, their abundance, and their expression levels. Members of the orders Corynebacteriales, Rhodobacterales, Alteromonadales, Oceanospirillales, Moraxellales, and Flavobacteriales were the main taxonomic players containing merA and merB genes in the deep ocean. These findings, together with our previous results of pure culture isolates of the deep bathypelagic ocean possessing the metabolic capacity to degrade MeHg, indicated that both methylmercury demethylation and HgII reduction likely occur in the global dark ocean, the largest biome in the biosphere.
Collapse
Affiliation(s)
- Isabel Sanz-Sáez
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Andrea G. Bravo
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Marta Ferri
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Joan-Martí Carreras
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Olga Sánchez
- Departament
de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Marta Sebastian
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Clara Ruiz-González
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Eric Capo
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Carlos M. Duarte
- Red
Sea Research Center, Division of Biological and Environmental Sciences
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900,Saudi Arabia
| | - Josep M. Gasol
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Pablo Sánchez
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Silvia G. Acinas
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| |
Collapse
|
3
|
Zhang S, Xia M, Pan Z, Wang J, Yin Y, Lv J, Hu L, Shi J, Jiang T, Wang D. Soil organic matter degradation and methylmercury dynamics in Hg-contaminated soils: Relationships and driving factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120432. [PMID: 38479282 DOI: 10.1016/j.jenvman.2024.120432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/01/2024] [Accepted: 02/17/2024] [Indexed: 04/07/2024]
Abstract
Biodegradation of soil organic matter (SOM), which involves greenhouse gas (GHG) emissions, plays an essential role in the global carbon cycle. Over the past few decades, this has become an important research focus, particularly in natural ecosystems. SOM biodegradation significantly affects contaminants in the environment, such as mercury (Hg) methylation, producing highly toxic methylmercury (MeHg). However, the potential link between GHG production from SOM turnover in contaminated soils and biogeochemical processes involving contaminants remains unclear. In this study, we investigated the dynamics of GHG, MeHg production, and the relationship between biogeochemical processes in soils from two typical Hg mining sites. The two contaminated soils have different pathways, explaining the significant variations in GHG and MeHg production. The divergence of the microbial communities in these two biogeochemical processes is essential. In addition to the microbial role, abiotic factors such as Hg species can significantly affect MeHg production. On the other hand, we found an inverse relationship between CH4 and MeHg, suggesting that carbon emission reduction policies and management could inadvertently increase the MeHg levels. This highlights the need for an eclectic approach to organic carbon sequestration and contaminant containment. These findings suggest that it is difficult to establish a general pattern to describe and explain the SOM degradation and MeHg production in contaminated soils within the specific scenarios. However, this study provides a case study and helpful insights for further understanding the links between environmental risks and carbon turnover in Hg mining areas.
Collapse
Affiliation(s)
- Siqi Zhang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Meng Xia
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Zhaoyang Pan
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Dingyong Wang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| |
Collapse
|
4
|
Shao B, Li Z, Wu Z, Yang N, Cui X, Lin H, Liu Y, He W, Zhao Y, Wang X, Tong Y. Impacts of autochthonous dissolved organic matter on the accumulation of methylmercury by phytoplankton and zooplankton in a eutrophic coastal ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122457. [PMID: 37633436 DOI: 10.1016/j.envpol.2023.122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The bioaccumulation of methylmercury (MeHg) within the pelagic food webs is a crucial determinant of the MeHg concentration in the organisms at higher trophic levels. Dissolved organic matter (DOM) is recognized for its influence on mercury (Hg) cycling in the aquatic environment because of its role in providing metabolic substrate for heterotrophic organism and serving as a strong ligand for MeHg. However, the impact of DOM on MeHg bioaccumulation in pelagic food chains remain controversial. Here, we explored MeHg bioaccumulation within a pelagic food web in China, in the eutrophic Bohai Sea and adjacent seas, covering a range of DOM concentrations and compositions. Our findings show that elevated concentrations of dissolved organic carbon (DOC) and phytoplankton biomass may contribute to a reduction in MeHg uptake by phytoplankton. Moreover, we observe that a higher level of autochthonous DOM in the water may result in more significant MeHg biomagnification in zooplankton. This can be explained by alterations in the structure of pelagic food webs and/or an increase in the direct consumption of DOM and particulate organic matter (POM) containing MeHg. Our study offers direct field monitoring evidence of dual roles played by DOM in regulating MeHg transfers from water to phytoplankton and zooplankton in coastal pelagic food webs. A thorough understanding of the intricate interactions is essential for a more comprehensive evaluation of ecological risks associated with MeHg exposure in coastal ecosystems.
Collapse
Affiliation(s)
- Bo Shao
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhike Li
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhengyu Wu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Ning Yang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaoyu Cui
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Huiming Lin
- College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yiwen Liu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Wei He
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yingxin Zhao
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuejun Wang
- College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yindong Tong
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China; School of Ecology and Environment, Tibet University, Lhasa, 850000, China.
| |
Collapse
|
5
|
Gojkovic Z, Simansky S, Sanabria A, Márová I, Garbayo I, Vílchez C. Interaction of Naturally Occurring Phytoplankton with the Biogeochemical Cycling of Mercury in Aquatic Environments and Its Effects on Global Hg Pollution and Public Health. Microorganisms 2023; 11:2034. [PMID: 37630594 PMCID: PMC10458190 DOI: 10.3390/microorganisms11082034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The biogeochemical cycling of mercury in aquatic environments is a complex process driven by various factors, such as ambient temperature, seasonal variations, methylating bacteria activity, dissolved oxygen levels, and Hg interaction with dissolved organic matter (DOM). As a consequence, part of the Hg contamination from anthropogenic activity that was buried in sediments is reinserted into water columns mainly in highly toxic organic Hg forms (methylmercury, dimethylmercury, etc.). This is especially prominent in the coastal shallow waters of industrial regions worldwide. The main entrance point of these highly toxic Hg forms in the aquatic food web is the naturally occurring phytoplankton. Hg availability, intake, effect on population size, cell toxicity, eventual biotransformation, and intracellular stability in phytoplankton are of the greatest importance for human health, having in mind that such Hg incorporated inside the phytoplankton cells due to biomagnification effects eventually ends up in aquatic wildlife, fish, seafood, and in the human diet. This review summarizes recent findings on the topic of organic Hg form interaction with natural phytoplankton and offers new insight into the matter with possible directions of future research for the prevention of Hg biomagnification in the scope of climate change and global pollution increase scenarios.
Collapse
Affiliation(s)
- Zivan Gojkovic
- Algae Biotechnology Group, CIDERTA, University of Huelva, 21007 Huelva, Spain; (A.S.); (I.G.); (C.V.)
| | - Samuel Simansky
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 61200 Brno, Czech Republic; (S.S.); (I.M.)
| | - Alain Sanabria
- Algae Biotechnology Group, CIDERTA, University of Huelva, 21007 Huelva, Spain; (A.S.); (I.G.); (C.V.)
| | - Ivana Márová
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 61200 Brno, Czech Republic; (S.S.); (I.M.)
| | - Inés Garbayo
- Algae Biotechnology Group, CIDERTA, University of Huelva, 21007 Huelva, Spain; (A.S.); (I.G.); (C.V.)
| | - Carlos Vílchez
- Algae Biotechnology Group, CIDERTA, University of Huelva, 21007 Huelva, Spain; (A.S.); (I.G.); (C.V.)
| |
Collapse
|