1
|
Pascual-García A, Rivett DW, Jones ML, Bell T. Replicating community dynamics reveals how initial composition shapes the functional outcomes of bacterial communities. Nat Commun 2025; 16:3002. [PMID: 40164605 PMCID: PMC11958796 DOI: 10.1038/s41467-025-57591-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Bacterial communities play key roles in global biogeochemical cycles, industry, agriculture, human health, and animal husbandry. There is therefore great interest in understanding bacterial community dynamics so that they can be controlled and engineered to optimise ecosystem services. We assess the reproducibility and predictability of bacterial community dynamics by creating a frozen archive of hundreds of naturally-occurring bacterial communities that we repeatedly revive and track in a standardised, complex resource environment. Replicate communities follow reproducible trajectories and the community dynamics closely map to ecosystem functioning. However, even under standardised conditions, the communities exhibit tipping-points, where small differences in initial community composition create divergent compositional and functional outcomes. The predictability of community trajectories therefore requires detailed knowledge of rugged compositional landscapes where ecosystem properties are not the inevitable result of prevailing environmental conditions but can be tilted toward different outcomes depending on the initial community composition. Our results shed light on the relationship between composition and function, opening new avenues to understand the feasibility and limitations of function prediction in complex microbial communities.
Collapse
Affiliation(s)
- A Pascual-García
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- Institute of Integrative Biology, ETH, Zürich, Switzerland
| | - D W Rivett
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Matt Lloyd Jones
- European Centre for Environment and Human Health, University of Exeter, Penryn, UK
| | - T Bell
- Imperial College London, Silwood Park Campus, Ascot, UK.
| |
Collapse
|
2
|
Draghi J, Zook E. Spatial clustering of hosts can favor specialist parasites. Ecol Evol 2024; 14:e70273. [PMID: 39559465 PMCID: PMC11570423 DOI: 10.1002/ece3.70273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 11/20/2024] Open
Abstract
Generalist parasites seem to enjoy the clear ecological advantage of a greater chance to find a host, and genetic trade-offs are therefore often invoked to explain why specialists can coexist with or outcompete generalists. Here we develop an alternative perspective based on optimal foraging theory to explain why spatial clustering can favor specialists even without genetic trade-offs. Using analytical and simulation models inspired by bacteriophage, we examine the optimal use of two hosts, one yielding greater reproductive success for the parasite than the other. We find that a phage may optimally ignore the worse host when the two hosts are clustered together in dense, ephemeral patches. We model conditions that enhance or reduce this selective benefit to a specialist parasite and show that it is eliminated entirely when the hosts occur only in separate patches. These results show that specialists can be favored even when trade-offs are weak or absent and emphasize the importance of spatiotemporal heterogeneity in models of optimal niche breadth.
Collapse
Affiliation(s)
- Jeremy Draghi
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| | - Evan Zook
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
3
|
Bos RP, Kaul D, Zettler ER, Hoffman JM, Dupont CL, Amaral-Zettler LA, Mincer TJ. Plastics select for distinct early colonizing microbial populations with reproducible traits across environmental gradients. Environ Microbiol 2023; 25:2761-2775. [PMID: 37132662 DOI: 10.1111/1462-2920.16391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
Little is known about early plastic biofilm assemblage dynamics and successional changes over time. By incubating virgin microplastics along oceanic transects and comparing adhered microbial communities with those of naturally occurring plastic litter at the same locations, we constructed gene catalogues to contrast the metabolic differences between early and mature biofilm communities. Early colonization incubations were reproducibly dominated by Alteromonadaceae and harboured significantly higher proportions of genes associated with adhesion, biofilm formation, chemotaxis, hydrocarbon degradation and motility. Comparative genomic analyses among the Alteromonadaceae metagenome assembled genomes (MAGs) highlighted the importance of the mannose-sensitive hemagglutinin (MSHA) operon, recognized as a key factor for intestinal colonization, for early colonization of hydrophobic plastic surfaces. Synteny alignments of MSHA also demonstrated positive selection for mshA alleles across all MAGs, suggesting that mshA provides a competitive advantage for surface colonization and nutrient acquisition. Large-scale genomic characteristics of early colonizers varied little, despite environmental variability. Mature plastic biofilms were composed of predominantly Rhodobacteraceae and displayed significantly higher proportions of carbohydrate hydrolysis enzymes and genes for photosynthesis and secondary metabolism. Our metagenomic analyses provide insight into early biofilm formation on plastics in the ocean and how early colonizers self-assemble, compared to mature, phylogenetically and metabolically diverse biofilms.
Collapse
Affiliation(s)
- Ryan P Bos
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Drishti Kaul
- Environmental Sustainability, J. Craig Venter Institute, La Jolla, California, USA
| | - Erik R Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
| | - Jeffrey M Hoffman
- Environmental Sustainability, J. Craig Venter Institute, La Jolla, California, USA
| | - Christopher L Dupont
- Environmental Sustainability, J. Craig Venter Institute, La Jolla, California, USA
| | - Linda A Amaral-Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Tracy J Mincer
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
- Department of Biology, Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
4
|
A Genome-Scale Metabolic Model of Marine Heterotroph Vibrio splendidus Strain 1A01. mSystems 2023; 8:e0037722. [PMID: 36853050 PMCID: PMC10134806 DOI: 10.1128/msystems.00377-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
While Vibrio splendidus is best known as an opportunistic pathogen in oysters, Vibrio splendidus strain 1A01 was first identified as an early colonizer of synthetic chitin particles incubated in seawater. To gain a better understanding of its metabolism, a genome-scale metabolic model (GSMM) of V. splendidus 1A01 was reconstructed. GSMMs enable us to simulate all metabolic reactions in a bacterial cell using flux balance analysis. A draft model was built using an automated pipeline from BioCyc. Manual curation was then performed based on experimental data, in part by gap-filling metabolic pathways and tailoring the model's biomass reaction to V. splendidus 1A01. The challenges of building a metabolic model for a marine microorganism like V. splendidus 1A01 are described. IMPORTANCE A genome-scale metabolic model of V. splendidus 1A01 was reconstructed in this work. We offer solutions to the technical problems associated with model reconstruction for a marine bacterial strain like V. splendidus 1A01, which arise largely from the high salt concentration found in both seawater and culture media that simulate seawater.
Collapse
|