1
|
Hao Y, Song Y, Li X, Li M, Wei X, Guo S, Hu Y. Progressive melting of surface water and unequal discharge of different DOM components profoundly perturb soil biochemical cycling. WATER RESEARCH 2024; 266:122360. [PMID: 39236504 DOI: 10.1016/j.watres.2024.122360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Freeze-thaw (FT) events profoundly perturb the biochemical processes of soil and water in mid- and high-latitude regions, especially the riparian zones that are often recognized as the hotspots of soil-water interactions and thus one of the most sensitive ecosystems to future climate change. However, it remains largely unknown how the heterogeneously composed and progressively discharged meltwater affect the biochemical cycling of the neighbor soil. In this study, stream water from a valley in the Chinese Loess Plateau was frozen at -10°C for 12 hours, and the meltwater (at +10°C) progressively discharged at three stages (T1 ∼ T3) was respectively added to rewet the soil collected from the same stream bed (Soil+T1 ∼ Soil+T3). Our results show that: (1) Approximately 65% of the total dissolved organic carbon and 53% of the total NO3--N were preferentially discharged at the first stage T1, with enrichment ratios of 1.60 ∼ 1.94. (2) The dissolved organic matter discharged at T1 was noticeably more biodegradable with significantly lower SUVA254 but higher HIX, and also predominated with humic-like, dissolved microbial metabolite-like, and fulvic acid-like components. (3) After added to the soil, the meltwater discharged at T1 (e.g., Soil+T1) significantly accelerated the mineralization of soil organic carbon with 2.4 ∼ 8.07-folded k factor after fitted into the first-order kinetics equation, triggering 125 ∼ 152% more total CO2 emissions. Adding T1 also promoted significantly more accumulation of soil microbial biomass carbon after 15 days of incubation, especially on the FT soil. Overall, the preferential discharge of the nutrient-enriched meltwater with more biodegradable DOM components at the initial melting stage significantly promoted the microbial growth and respiratory activities in the recipient soil, and triggered sizable CO2 emission pulses. This reveals a common but long-ignored phenomenon in cold riparian zones, where progressive freeze-thaw can partition and thus shift the DOM compositions in stream water over melting time, and in turn profoundly perturb the biochemical cycles of the neighbor soil body.
Collapse
Affiliation(s)
- Yongli Hao
- State Key Lab of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil & Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Song
- State Key Lab of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil & Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianwen Li
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xiaorong Wei
- State Key Lab of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil & Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengli Guo
- State Key Lab of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil & Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaxian Hu
- State Key Lab of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil & Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Sanyal A, Antony R, Samui G, Thamban M. Autotrophy to Heterotrophy: Shift in Bacterial Functions During the Melt Season in Antarctic Cryoconite Holes. J Microbiol 2024; 62:591-609. [PMID: 38814540 DOI: 10.1007/s12275-024-00140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Microbes residing in cryoconite holes (debris, water, and nutrient-rich ecosystems) on the glacier surface actively participate in carbon and nutrient cycling. Not much is known about how these communities and their functions change during the summer melt-season when intense ablation and runoff alter the influx and outflux of nutrients and microbes. Here, we use high-throughput-amplicon sequencing, predictive metabolic tools and Phenotype MicroArray techniques to track changes in bacterial communities and functions in cryoconite holes in a coastal Antarctic site and the surrounding fjord, during the summer season. The bacterial diversity in cryoconite hole meltwater was predominantly composed of heterotrophs (Proteobacteria) throughout the season. The associated functional potentials were related to heterotrophic-assimilatory and -dissimilatory pathways. Autotrophic Cyanobacterial lineages dominated the debris community at the beginning and end of summer, while heterotrophic Bacteroidota- and Proteobacteria-related phyla increased during the peak melt period. Predictive functional analyses based on taxonomy show a shift from predominantly phototrophy-related functions to heterotrophic assimilatory pathways as the melt-season progressed. This shift from autotrophic to heterotrophic communities within cryoconite holes can affect carbon drawdown and nutrient liberation from the glacier surface during the summer. In addition, the flushing out and export of cryoconite hole communities to the fjord could influence the biogeochemical dynamics of the fjord ecosystem.
Collapse
Affiliation(s)
- Aritri Sanyal
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa, 403804, India.
- School of Earth, Ocean and Atmospheric Sciences, Goa University, Goa, 403206, India.
| | - Runa Antony
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa, 403804, India
- GFZ German Research Centre for Geosciences, 14473, Potsdam, Germany
| | - Gautami Samui
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa, 403804, India
- Department of Environmental Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Meloth Thamban
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa, 403804, India
| |
Collapse
|
3
|
Han P, Tang X, Koch H, Dong X, Hou L, Wang D, Zhao Q, Li Z, Liu M, Lücker S, Shi G. Unveiling unique microbial nitrogen cycling and nitrification driver in coastal Antarctica. Nat Commun 2024; 15:3143. [PMID: 38609359 PMCID: PMC11014942 DOI: 10.1038/s41467-024-47392-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Largely removed from anthropogenic delivery of nitrogen (N), Antarctica has notably low levels of nitrogen. Though our understanding of biological sources of ammonia have been elucidated, the microbial drivers of nitrate (NO3-) cycling in coastal Antarctica remains poorly understood. Here, we explore microbial N cycling in coastal Antarctica, unraveling the biological origin of NO3- via oxygen isotopes in soil and lake sediment, and through the reconstruction of 1968 metagenome-assembled genomes from 29 microbial phyla. Our analysis reveals the metabolic potential for microbial N2 fixation, nitrification, and denitrification, but not for anaerobic ammonium oxidation, signifying a unique microbial N-cycling dynamic. We identify the predominance of complete ammonia oxidizing (comammox) Nitrospira, capable of performing the entire nitrification process. Their adaptive strategies to the Antarctic environment likely include synthesis of trehalose for cold stress, high substrate affinity for resource utilization, and alternate metabolic pathways for nutrient-scarce conditions. We confirm the significant role of comammox Nitrospira in the autotrophic, nitrification process via 13C-DNA-based stable isotope probing. This research highlights the crucial contribution of nitrification to the N budget in coastal Antarctica, identifying comammox Nitrospira clade B as a nitrification driver.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Institute of Eco-Chongming (IEC), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Hanna Koch
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, A-3430, Tulln, Austria
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, 361005, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Institute of Eco-Chongming (IEC), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Danhe Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Qian Zhao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Zhe Li
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
- Institute of Eco-Chongming (IEC), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Guitao Shi
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
4
|
Jin T, Li D, Liu Y, Li K, Wang L. Microbe combined with Fe 2+-heat activated persulfate to decompose phenanthrene in red soil: comparison of acid-resistant degrading microflora and indigenous bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113932-113947. [PMID: 37853225 DOI: 10.1007/s11356-023-29949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
This work is designed to counteract the deficiency of targeted research on the PAHs polluted specific soil, especially when the chemicals extremely denatured it. Phenanthrene-contaminated red soil was treated through two-stage process: persulfate oxidation (on dosages of 3.48%, 5.21%, and 6.94%, combined with Fe2+ and β-cyclodextrin, then heated) followed by biodegradation (indigenous bacteria vs. acid-resistant PAHs-degrading microflora (named ADM)) for 90 days. The dosage of oxidant greatly affected the removal efficiencies, which ranged from 46.78 to 85.34% under different treatment. After undergoing oxidation, the soil pH dropped below 3.0 synchronously and retained relatively strong oxidation state. The indigenous bacteria in red soil showed considerable degradation potential that will not vanish upon the sudden change of soil properties, whose average combined removal reached 95.43%, even higher than subgroups of bioaugmentation, but the population structure showed extremely simplex (Proteobacteria as superior occupied proportion of 91.77% after 90-day rehabilitation). The ADM screened from the coking wastewater was dominated by Klebsiella (75.4%) and Pseudomonas (23.6%), whose cooperation with 6.94% persulfate made the residual PHE reduced to less than 50 mg·kg-1 in about 28 days. High-throughput sequencing analysis showed that the microbial community composition of the ADM applied-group was more abundant in the later stage of remediation. ADM inoculation has the advantages of shortening the restoration period and having a positive impact on the soil micro-ecology.
Collapse
Affiliation(s)
- Tao Jin
- School of Environment and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Dan Li
- School of Environment and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Yanzehua Liu
- School of Environment and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Liping Wang
- School of Environment and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
5
|
Amarelle V, Roldán DM, Fabiano E, Guazzaroni ME. Synthetic Biology Toolbox for Antarctic Pseudomonas sp. Strains: Toward a Psychrophilic Nonmodel Chassis for Function-Driven Metagenomics. ACS Synth Biol 2023; 12:722-734. [PMID: 36862944 DOI: 10.1021/acssynbio.2c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
One major limitation of function-driven metagenomics is the ability of the host to express the metagenomic DNA correctly. Differences in the transcriptional, translational, and post-translational machinery between the organism to which the DNA belongs and the host strain are all factors that influence the success of a functional screening. For this reason, the use of alternative hosts is an appropriate approach to favor the identification of enzymatic activities in function-driven metagenomics. To be implemented, appropriate tools should be designed to build the metagenomic libraries in those hosts. Moreover, discovery of new chassis and characterization of synthetic biology toolbox in nonmodel bacteria is an active field of research to expand the potential of these organisms in processes of industrial interest. Here, we assessed the suitability of two Antarctic psychrotolerant Pseudomonas strains as putative alternative hosts for function-driven metagenomics using pSEVA modular vectors as scaffold. We determined a set of synthetic biology tools suitable for these hosts and, as a proof of concept, we demonstrated their fitness for heterologous protein expression. These hosts represent a step forward for the prospection and identification of psychrophilic enzymes of biotechnological interest.
Collapse
Affiliation(s)
- Vanesa Amarelle
- Departamento de Bioquímica y Genómica Microbianas. Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo 11600, Uruguay
| | - Diego M Roldán
- Departamento de Bioquímica y Genómica Microbianas. Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo 11600, Uruguay
| | - Elena Fabiano
- Departamento de Bioquímica y Genómica Microbianas. Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo 11600, Uruguay
| | - María-Eugenia Guazzaroni
- Departamento de Biologia. FFCLRP, University of São Paulo, 14049-901 Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|