1
|
Dong W, Luo Y, He D, Zhang M, Zeng J, Chen Y. Oncolytic virotherapy against lung cancer: key receptors and signaling pathways of viral entry. Front Immunol 2024; 15:1473288. [PMID: 39430750 PMCID: PMC11486668 DOI: 10.3389/fimmu.2024.1473288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Lung cancer accounts for the highest cancer-related mortality worldwide. While immunotherapies targeting anti-tumor immune responses have demonstrated efficacy in clinical practice, the demand for novel treatment modalities remains urgent. Oncolytic viruses (OVs), which selectively kill tumor cells while stimulating an anti-tumor immune response, represent a potential breakthrough in lung cancer therapy. The induction of anti-tumor immunity by OVs is central to their overall therapeutic effectiveness. Many natural receptors on the surface of cancer cells are dysregulated, providing potential entry points for OVs. Furthermore, the inherent dysregulation of some key signaling pathways in lung cancer cells promotes proliferation, progression and metastasis, which may facilitate selective viral replication. In this review, we explore the application of OVs in lung cancer by analyzing several major OVs and their corresponding entry receptors. Then, we also examine the key signaling pathways and molecules with the potential to synergize with OVs in modulating the immune tumor microenvironment. Finally, we discuss the combination and administration strategies that warrant further clinical trials for validation. Despite certain limitations, the tolerability of OVs positions virotherapy as a promising avenue in the future of lung cancer treatment.
Collapse
Affiliation(s)
- Wenxun Dong
- Department of Thoracic Surgery I, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Ying Luo
- Department of Thoracic Surgery I, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Daqian He
- Department of Thoracic Surgery I, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China
| | - Jingtong Zeng
- Department of Thoracic Surgery I, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Ying Chen
- Department of Thoracic Surgery I, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| |
Collapse
|
2
|
Zhang Z, Xing J, Tang X, Sheng X, Chi H, Zhan W. Nectin1 is a pivotal host factor involved in attachment and entry of red-spotted grouper nervous necrosis virus in the early stages of the viral life cycle. J Virol 2024; 98:e0090124. [PMID: 39194240 PMCID: PMC11406929 DOI: 10.1128/jvi.00901-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Nervous necrosis virus (NNV) is a highly neurotropic virus that poses a persistent threat to the survival of multiple fish species. However, its inimitable neuropathogenesis remains largely elusive. To rummage potential partners germane to the nervous system, we investigated the interaction between red-spotted grouper NNV (RGNNV) and grouper brain by immunoprecipitation coupled with mass spectrometry and discerned Nectin1 as a novel host factor subtly involved in viral early invasion events. Nectin1 was abundant in neural tissues and implicated in the inception of tunnel nanotubes triggered by RGNNV. Its overexpression not only dramatically potentiated the replication dynamics of RGNNV in susceptible cells, but also empowered non-sensitive cells to expeditiously capture free virions within 2 min. This potency was impervious to low temperatures but was dose-dependently suppressed by soluble protein or specific antibody of Nectin1 ectodomain, indicating Nectin1 as an attachment receptor for RGNNV. Mechanistically, efficient hijacking of virions by Nectin1 strictly depended on intricate linkages to different modules of viral capsid protein, especially the direct binding between the IgC1 loop and P-domain. More strikingly, despite abortive proliferation in Nectin1-reconstructed CHSE-214 cells, a non-sensitive cell, RGNNV could gain access to the intracellular compartment by capitalizing on Nectin1, thereby inducing canonical cytoplasmic vacuolation. Altogether, our findings delineate a candidate entrance for RGNNV infiltration into the nervous system, which may shed unprecedented insights into the exploration and elucidation of RGNNV pathogenesis.IMPORTANCENervous necrosis virus (NNV) is one of the most virulent pathogens in the aquaculture industry, which inflicts catastrophic damage to ecology, environment, and economy annually around the world. Nevertheless, its idiosyncratic invasion and latency mechanisms pose enormous hardships to epidemic prevention and control. In this study, deploying grouper brain as a natural screening library, a single-transmembrane glycoprotein, Nectin1, was first identified as an emergent functional receptor for red-spotted grouper NNV (RGNNV) that widely allocated in nervous tissues and directly interacted with viral capsid protein through distinct Ig-like loops to bridge virus-host crosstalk, apprehend free virions, and concomitantly propel viral entry. Our findings illuminate the critical role of Nectin1 in RGNNV attachment and entry and provide a potential target for future clinical intervention strategies in the therapeutic race against RGNNV.
Collapse
Affiliation(s)
- Zhiqi Zhang
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Dai Y, Idorn M, Serrero MC, Pan X, Thomsen EA, Narita R, Maimaitili M, Qian X, Iversen MB, Reinert LS, Flygaard RK, Chen M, Ding X, Zhang BC, Carter-Timofte ME, Lu Q, Jiang Z, Zhong Y, Zhang S, Da L, Zhu J, Denham M, Nissen P, Mogensen TH, Mikkelsen JG, Zhang SY, Casanova JL, Cai Y, Paludan SR. TMEFF1 is a neuron-specific restriction factor for herpes simplex virus. Nature 2024; 632:383-389. [PMID: 39048823 DOI: 10.1038/s41586-024-07670-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
The brain is highly sensitive to damage caused by infection and inflammation1,2. Herpes simplex virus 1 (HSV-1) is a neurotropic virus and the cause of herpes simplex encephalitis3. It is unknown whether neuron-specific antiviral factors control virus replication to prevent infection and excessive inflammatory responses, hence protecting the brain. Here we identify TMEFF1 as an HSV-1 restriction factor using genome-wide CRISPR screening. TMEFF1 is expressed specifically in neurons of the central nervous system and is not regulated by type I interferon, the best-known innate antiviral system controlling virus infections. Depletion of TMEFF1 in stem-cell-derived human neurons led to elevated viral replication and neuronal death following HSV-1 infection. TMEFF1 blocked the HSV-1 replication cycle at the level of viral entry through interactions with nectin-1 and non-muscle myosin heavy chains IIA and IIB, which are core proteins in virus-cell binding and virus-cell fusion, respectively4-6. Notably, Tmeff1-/- mice exhibited increased susceptibility to HSV-1 infection in the brain but not in the periphery. Within the brain, elevated viral load was observed specifically in neurons. Our study identifies TMEFF1 as a neuron-specific restriction factor essential for prevention of HSV-1 replication in the central nervous system.
Collapse
Affiliation(s)
- Yao Dai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Manja Idorn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Manutea C Serrero
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Xiaoyong Pan
- Key Laboratory of System Control and Information Processing (Ministry of Education), Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
| | - Emil A Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Ryo Narita
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Muyesier Maimaitili
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Xiaoqing Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Marie B Iversen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Line S Reinert
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Rasmus K Flygaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Muwan Chen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Xiangning Ding
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Bao-Cun Zhang
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Madalina E Carter-Timofte
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuofan Jiang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiye Zhong
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhui Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lintai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinwei Zhu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Mark Denham
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Shen-Ying Zhang
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Yujia Cai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Center for Immunology of Viral Infections, Aarhus, Denmark.
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
| |
Collapse
|
4
|
Jiang J, Zhang D, Liu W, Yang J, Yang F, Liu J, Hu K. Overexpression of NLRP12 enhances macrophage immune response and alleviates herpes simplex keratitis. Front Cell Infect Microbiol 2024; 14:1416105. [PMID: 39119293 PMCID: PMC11306119 DOI: 10.3389/fcimb.2024.1416105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Herpes simplex keratitis (HSK) is a blinding disease caused by corneal infection of Herpes simplex virus type 1 (HSV-1). Effective clearance of HSV-1 from the infected cornea is crucial for HSK management. Macrophages play an important part in the innate immune defense against viral infections. This study investigates the immunomodulatory role of NLRP12 in macrophage immune response during HSV-1 infection. Methods NLRP12 expression post-infection was assessed in various macrophage cell lines. Overexpression of NLRP12 was achieved by lentiviral transfection, and its effect on HSV-1 replication and immune responses were examined. Mechanistic insights into the role of NLRP12 were explored using immunofluorescence and Western Blot. For in vivo studies, ocular adoptive transfer of NLRP12-overexpressing bone marrow derived macrophages (BMDMs) was performed. HSV-1 viral loads, HSK symptoms, and macrophage-mediated immune responses were investigated. Results A significant decrease in NLRP12 expression post-infection was observed in various macrophage cell lines. Overexpression of NLRP12 in macrophages reduced HSV-1 replication. Mechanistically, overexpression of NLRP12 triggered early and robust pyroptosis in response to HSV-1 infection, inducing interleukin (IL)-18 production and activating downstream antiviral responses through the JAK-STAT signaling pathway. In vivo, ocular adoptive transfer of NLRP12-overexpressing BMDMs to mouse corneas alleviated HSK damage and reduced HSV-1 viral loads. NLRP12-overexpressing BMDMs improved antiviral responses in the cornea and promoted the maturation of corneal-infiltrating macrophages and dendritic cells. Additionally, NLRP12-overexpressing BMDMs amplified the adaptive immune response in the submandibular draining lymph nodes. Discussion These findings highlight the role of NLRP12 in macrophage-mediated immune response against HSV-1 infection and suggest its potential for possible immunotherapy for HSK.
Collapse
Affiliation(s)
- Jiaxuan Jiang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Di Zhang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wei Liu
- Department of Ophthalmology, Linyi Bright Eye Hospital, Linyi, China
| | - Jingya Yang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fan Yang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Junpeng Liu
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Kai Hu
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Rahangdale R, Ghormode P, Tender T, Balireddy S, Birangal S, Kishore R, Mohammad FS, Pasupuleti M, Chandrashekar H R. Anti-HSV activity of nectin-1-derived peptides targeting HSV gD: an in-silico and in-vitro approach. J Biomol Struct Dyn 2024:1-14. [PMID: 38720617 DOI: 10.1080/07391102.2024.2349525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/24/2024] [Indexed: 05/22/2024]
Abstract
Herpes simplex virus (HSV) infections affect a wide range of the global population. The emergence of resistance to the existing anti-HSV therapy highlights the necessity for an innovative strategy. The interaction of HSV gD with its main host receptor nectin-1 is a potential target for new antiviral drugs. The aim of this study was to develop a peptide derived from nectin-1 targeting HSV gD using the in-silico method and evaluate them for anti-HSV activity. Residues 59-133 of the Nectin-1 V-domain constitute the interaction interface with HSV gD. Bioinformatic tools viz., PEP-FOLD3, ClusPro 2.0, HawkDock and Desmond were used to model the peptide and confirm its binding specificity with HSV gD protein. The peptides with potential interactions were custom synthesized and anti-HSV activity was evaluated in vitro against HSV-1 and HSV-2 by CPE inhibition assay. Five peptide sequences were identified as exhibiting good interaction with HSV-gD proteins. Among them, peptide N1 (residues 76-90) offered maximum protection against HSV-1 (66.57%) and HSV-2 (71.12%) infections. Modification of the identified peptide through peptidomimetic approaches may further enhance the activity and stability of the identified peptide.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rakesh Rahangdale
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Parnavi Ghormode
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Tenzin Tender
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sridevi Balireddy
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sumit Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Raj Kishore
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Fayaz Shaik Mohammad
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Mukesh Pasupuleti
- Microbiology Division, Council of Scientific and Industrial Research, Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Raghu Chandrashekar H
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
6
|
Ye N, Feng W, Fu T, Tang D, Zeng Z, Wang B. Membrane fusion, potential threats, and natural antiviral drugs of pseudorabies virus. Vet Res 2023; 54:39. [PMID: 37131259 PMCID: PMC10152797 DOI: 10.1186/s13567-023-01171-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/04/2023] [Indexed: 05/04/2023] Open
Abstract
Pseudorabies virus (PrV) can infect several animals and causes severe economic losses in the swine industry. Recently, human encephalitis or endophthalmitis caused by PrV infection has been frequently reported in China. Thus, PrV can infect animals and is becoming a potential threat to human health. Although vaccines and drugs are the main strategies to prevent and treat PrV outbreaks, there is no specific drug, and the emergence of new PrV variants has reduced the effectiveness of classical vaccines. Therefore, it is challenging to eradicate PrV. In the present review, the membrane fusion process of PrV entering target cells, which is conducive to revealing new therapeutic and vaccine strategies for PrV, is presented and discussed. The current and potential PrV pathways of infection in humans are analyzed, and it is hypothesized that PrV may become a zoonotic agent. The efficacy of chemically synthesized drugs for treating PrV infections in animals and humans is unsatisfactory. In contrast, multiple extracts of traditional Chinese medicine (TCM) have shown anti-PRV activity, exerting its effects in different phases of the PrV life-cycle and suggesting that TCM compounds may have great potential against PrV. Overall, this review provides insights into developing effective anti-PrV drugs and emphasizes that human PrV infection should receive more attention.
Collapse
Affiliation(s)
- Ni Ye
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Wei Feng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Tiantian Fu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Deyuan Tang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhiyong Zeng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bin Wang
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
He Y, Wang C, Liang Q, Guo R, Jiang J, Shen W, Hu K. PKHB1 peptide induces antiviral effects through induction of immunogenic cell death in herpes simplex keratitis. Front Pharmacol 2022; 13:1048978. [PMID: 36532743 PMCID: PMC9751201 DOI: 10.3389/fphar.2022.1048978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/09/2022] [Indexed: 12/26/2023] Open
Abstract
Herpes simplex keratitis (HSK) is a severe, infectious corneal disease caused by herpes simplex virus type 1 (HSV-1) infection. The increasing prevalence of acyclovir resistance, the side effects of hormonal drugs, and the ease of recurrence after surgery have made it crucial to develop new methods of treating HSK. HSV-1 evades the host immune response through various mechanisms. Therefore, we explored the role of the immunogenic cell death inducer PKHB1 peptide in HSK. After subconjunctival injection of PKHB1 peptide, we observed the ocular surface lesions and survival of HSK mice and detected the virus levels in tear fluid, corneas, and trigeminal ganglions. We found that PKHB1 peptide reduced HSV-1 levels in the eye and alleviated the severity of HSK. Moreover, it increased the number of corneal infiltrating antigen-presenting cells (APCs), such as macrophages and dendritic cells, and CD8+ T cells in ocular draining lymph nodes. We further observed that PKHB1 peptide promoted the exposure of calreticulin, as well as the release of ATP and high-mobility group box 1 in HSV-1-infected cells in vitro. Our findings suggested that PKHB1 peptide promoted the recruitment and maturation of APCs by inducing the release of large amounts of damage-associated molecular patterns from infected cells. APCs then phagocytized antigenic materials and translocated to the lymph nodes, triggering a cytotoxic T lymphocyte-dependent immune response that ultimately alleviated HSK.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kai Hu
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|