1
|
Diban F, Di Fermo P, Di Lodovico S, Petrini M, Pilato S, Fontana A, Pinti M, Di Giulio M, Lence E, González-Bello C, Cellini L, D’Ercole S. Methylglyoxal Alone or Combined with Light-Emitting Diodes/Complex Electromagnetic Fields Represent an Effective Response to Microbial Chronic Wound Infections. Antibiotics (Basel) 2025; 14:396. [PMID: 40298537 PMCID: PMC12024167 DOI: 10.3390/antibiotics14040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Background: antimicrobial resistance represents a critical issue leading to delayed wound healing; hence, it is necessary to develop novel strategies to address this phenomenon. Objectives: this study aimed to explore the antimicrobial/anti-virulence action of Methylglyoxal-MGO alone or combined with novel technologies such as Light-Emitting Diodes-LED and Complex Magnetic Fields-CMFs against resistant clinical strains isolated from chronic wounds. Methods: characterized planktonic Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans isolates were used. Antimicrobial activity was evaluated by measuring optical density, Colony Forming Units-CFU, and synergy between MGO/LED or CMFs. Cellular membrane permeability by propidium iodide fluorescence and fluidity by Laurdan generalized polarization measurements were performed. P. aeruginosa motility was tested using the soft agar method. A docking study was performed to evaluate the possible interaction between MGO and urease in P. aeruginosa. Results: single/combined treatments showed significant antimicrobial activity. Major CFU reduction was detected after CMFs/MGO+CMFs application on C. albicans. Treatments exhibited significant changes in membrane permeability and fluidity. The treatments decreased P. aeruginosa motility with a major reduction after LED application. Docking analysis showed that MGO could bind with P. aeruginosa urease leading to defective folding and functional alterations. Conclusions: the results suggest that these treatments could represent promising and green therapeutic solutions against resistant isolates from chronic wounds.
Collapse
Affiliation(s)
- Firas Diban
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.D.); (S.D.L.); (S.P.); (A.F.); (M.P.); (M.D.G.); (L.C.)
| | - Paola Di Fermo
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.D.F.); (M.P.)
| | - Silvia Di Lodovico
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.D.); (S.D.L.); (S.P.); (A.F.); (M.P.); (M.D.G.); (L.C.)
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.D.F.); (M.P.)
| | - Serena Pilato
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.D.); (S.D.L.); (S.P.); (A.F.); (M.P.); (M.D.G.); (L.C.)
| | - Antonella Fontana
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.D.); (S.D.L.); (S.P.); (A.F.); (M.P.); (M.D.G.); (L.C.)
| | - Morena Pinti
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.D.); (S.D.L.); (S.P.); (A.F.); (M.P.); (M.D.G.); (L.C.)
| | - Mara Di Giulio
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.D.); (S.D.L.); (S.P.); (A.F.); (M.P.); (M.D.G.); (L.C.)
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain; (E.L.); (C.G.-B.)
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain; (E.L.); (C.G.-B.)
| | - Luigina Cellini
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.D.); (S.D.L.); (S.P.); (A.F.); (M.P.); (M.D.G.); (L.C.)
| | - Simonetta D’Ercole
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.D.F.); (M.P.)
| |
Collapse
|
2
|
Farha MA, Tu MM, Brown ED. Important challenges to finding new leads for new antibiotics. Curr Opin Microbiol 2025; 83:102562. [PMID: 39603107 DOI: 10.1016/j.mib.2024.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Identification of new antibiotics remains a huge challenge. The last antibiotic of new chemical class and mechanism was discovered more than 30 years ago. Advances since have been largely incremental modifications to a limited number of chemical scaffolds. Discovering and developing truly new antibiotics is challenging: the science is complex, and the development process is time consuming and expensive. Herein, we focus on the discovery phase of modern antibacterial research and development. We argue that antibacterial discovery has been challenged by a poor understanding of bacterial permeability, by generic in vitro conventions that ignore the host, and by the inherent complexity of bacterial systems. Together, these factors have colluded to challenge modern, industrial, and reductionist approaches to antibiotic discovery. Nevertheless, advances in our understanding of many of these obstacles, including a new appreciation for the complexity of both host and pathogen biology, bode well for future efforts.
Collapse
Affiliation(s)
- Maya A Farha
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Megan M Tu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
3
|
Cheng Y, Liu X, Fan F, Zhang Y, Cao M, Bai L, Ming H, Chen H, Liu Y, Yu Y, Wang Y. An effective drug-free hydrogel for accelerating the whole healing process of bacteria-infected wounds. Biomater Sci 2025; 13:758-776. [PMID: 39717924 DOI: 10.1039/d4bm01467g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Wound healing is a dynamic and complex process involving hemostasis, inflammation, fibroblast proliferation, and tissue remodeling. This process is highly susceptible to bacterial infection, which often leads to impaired and delayed wound repair. While antibiotic therapy remains the primary clinical approach for treating bacteria-infected wounds, its widespread use poses a significant risk of developing bacterial resistance. Here, a novel drug-free hydrogel was fabricated using polysaccharides and humic acid (HU) to facilitate the healing of bacteria-infected wounds. Specifically, hyaluronic acid (HA) was modified via oxidation with sodium periodate, introducing aldehyde groups along its main chains. Pectin (PT) was grafted with amino groups on its side chains through an amidation reaction with ethylenediamine. HU, a natural organic compound with hemostatic, antioxidant, antibacterial, anti-inflammatory, and photothermal properties, was reduced using sodium borohydride to generate an increased number of phenolic hydroxyl and catechol groups. The resulting hydrogel, called HA-PT/HUOH, was prepared by integrating these three chemically modified biomaterials through dynamic Schiff base cross-linking and hydrogen bonding. The HA-PT/HUOH hydrogel showed excellent injectability, strong bioadhesiveness, rapid self-healing capabilities, and potent photothermal performance. Both in vitro and in vivo studies demonstrated that HA-PT/HUOH significantly accelerated the healing of bacteria-infected wounds by modulating the entire wound-healing process. This included enhancing hemostasis, bacteriostasis, antioxidation, anti-inflammatory responses, fibroblast proliferation, and tissue remodeling. In summary, this multifunctional drug-free hydrogel presents a highly promising solution as a wound dressing for clinical application.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.
| | - Xingkun Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Furong Fan
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Yinchao Zhang
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Mingxin Cao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Liya Bai
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Hong Ming
- School of Life Science and Technology, Xinxiang Medical University, 601 Jinsui Road, Hongqi District, Xinxiang, 453003, China
| | - Hongli Chen
- School of Life Science and Technology, Xinxiang Medical University, 601 Jinsui Road, Hongqi District, Xinxiang, 453003, China
| | - Yang Liu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Hepatobiliary and Pancreatic Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300308, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.
| | - Yinsong Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
4
|
Musuroi SI, Voinescu A, Musuroi C, Baditoiu LM, Muntean D, Izmendi O, Jumanca R, Licker M. The Challenges of The Diagnostic and Therapeutic Approach of Patients with Infectious Pathology in Emergency Medicine. J Pers Med 2023; 14:46. [PMID: 38248747 PMCID: PMC10821085 DOI: 10.3390/jpm14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
The emergency department (ED) represents an important setting for addressing inappropriate antimicrobial prescribing practices because of the time constraints and the duration of microbiological diagnosis. The purpose of this study is to evaluate the etiology and antimicrobial resistance (AMR) pattern of the community-acquired pathogens, as well as the epidemiological characteristics of patients admitted through the ED, in order to guide appropriate antibiotic therapy. METHODS A retrospective observational study was performed on 657 patients, from whom clinical samples (urine, purulent secretions, blood cultures, etc.) were collected for microbiological diagnosis in the first 3 days after presentation in the ED. The identification of pathogens and the antimicrobial susceptibility testing with minimum inhibitory concentration determination were carried out according to the laboratory protocols. RESULTS From the 767 biological samples analyzed, 903 microbial isolates were identified. E. coli was most frequently isolated (24.25%), followed by Klebsiella spp., S. aureus (SA), and non-fermentative Gram-negative bacilli. E. coli strains maintained their natural susceptibility to most antibiotics tested. In the case of Pseudomonas spp. and Acinetobacter spp., increased rates of AMR were identified. Also, 32.3% of SA strains were community-acquired MRSA. CONCLUSIONS The introduction of rapid microbiological diagnostic methods in emergency medicine is imperative in order to timely identify AMR strains and improve therapeutic protocols.
Collapse
Affiliation(s)
- Silvia Ioana Musuroi
- Doctoral School, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.I.M.)
- Internal Medicine Department, Municipal Emergency Clinical Hospital, 300254 Timisoara, Romania
| | - Adela Voinescu
- Doctoral School, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.I.M.)
- Microbiology Department, Multidisciplinary Research Center of Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.M.); (M.L.)
- Microbiology Laboratory, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Corina Musuroi
- Microbiology Department, Multidisciplinary Research Center of Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.M.); (M.L.)
- Microbiology Laboratory, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Luminita Mirela Baditoiu
- Epidemiology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Delia Muntean
- Microbiology Department, Multidisciplinary Research Center of Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.M.); (M.L.)
- Microbiology Laboratory, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Oana Izmendi
- Doctoral School, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.I.M.)
- Microbiology Department, Multidisciplinary Research Center of Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.M.); (M.L.)
- Microbiology Laboratory, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Romanita Jumanca
- Romanian and Foreign Languages Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Monica Licker
- Microbiology Department, Multidisciplinary Research Center of Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.M.); (M.L.)
- Microbiology Laboratory, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| |
Collapse
|
5
|
Di Lodovico S, Petrini M, D'Amico E, Di Fermo P, Diban F, D'Arcangelo S, Piattelli A, Cellini L, Iezzi G, Di Giulio M, D'Ercole S. Complex magnetic fields represent an eco-sustainable technology to counteract the resistant Candida albicans growth without affecting the human gingival fibroblasts. Sci Rep 2023; 13:22067. [PMID: 38086849 PMCID: PMC10716184 DOI: 10.1038/s41598-023-49323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Novel technologies such as complex magnetic fields-CMFs represent an eco-sustainable proposal to counteract the infection associated to resistant microorganisms. The aim of this study was to evaluate the effect of two CMF programs (STRESS, ANTIBACTERIAL) against clinical antifungal resistant C. albicans also evaluating their uneffectiveness on gingival fibroblasts (hGFs). The STRESS program was more efficacious on C. albicans biofilm with up to 64.37% ± 10.80 of biomass and up to 99.19% ± 0.06 CFU/ml reductions in respect to the control also inducing an alteration of lipidic structure of the membrane. The MTT assay showed no CMFs negative effects on the viability of hGFs with a major ROS production with the ANTIBACTERIAL program at 3 and 24 h. For the wound healing assay, STRESS program showed the best effect in terms of the rate migration at 24 h, showing statistical significance of p < 0.0001. The toluidine-blue staining observations showed the typical morphology of cells and the presence of elongated and spindle-shaped with cytoplasmic extensions and lamellipodia was observed by SEM. The ANTIBACTERIAL program statistically increased the production of collagen with respect to control and STRESS program (p < 0.0001). CMFs showed a relevant anti-virulence action against C. albicans, no cytotoxicity effects and a high hGFs migration rate. The results of this study suggest that CMFs could represent a novel eco-sustainable strategy to counteract the resistant yeast biofilm infections.
Collapse
Affiliation(s)
- Silvia Di Lodovico
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Morena Petrini
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Emira D'Amico
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Paola Di Fermo
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Firas Diban
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Sara D'Arcangelo
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International, University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131, Rome, Italy
- Facultad de Medicina, UCAM Universidad Catolica San Antonio de Murcia, 30107, Murcia, Spain
| | - Luigina Cellini
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Giovanna Iezzi
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Mara Di Giulio
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Simonetta D'Ercole
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy.
| |
Collapse
|
6
|
da Cruz JER, Saldanha HC, do Nascimento AM, Borges RB, Gomes MDS, Freitas GROE, Leal CM, Ferreira EA, da Silva Filho AA, Morais ER. Evaluation of the Antioxidant, Antimicrobial, and Anti-Biofilm Effects of the Stem Bark, Leaf, and Seed Extracts from Hymenaea courbaril and Characterization by UPLC-ESI-QTOF-MS/MS Analysis. Antibiotics (Basel) 2023; 12:1601. [PMID: 37998803 PMCID: PMC10668761 DOI: 10.3390/antibiotics12111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
Currently, biofilm-forming bacteria are difficult to treat by conventional antibiotic therapy and are, thus, becoming a clinical and epidemiological problem worldwide. Medicinal plants have been identified as novel alternative treatments due to their therapeutic and antimicrobial effects. In this context, the present study aimed to determine the total phenolic content, antioxidant capacity, and antimicrobial and anti-biofilm potential of nine extracts of Hymenaea courbaril (Fabaceae), popularly known as Jatobá. Furthermore, extracts that exhibited biofilm inhibitory activity against S. aureus (ATCC 25923) were selected for UPLC-HRMS/MS chemical analysis. Our results showed a high total phenolic content, mainly in the stem bark extract, and that the plant is rich in compounds with antioxidant activity. In the anti-biofilm analysis, leaf extracts stood out in comparison with chloramphenicol, with inhibition percentages of 78.29% and 78.85%, respectively. Through chemical analysis by UPLC-HRMS/MS, chrysoeriol-7-O-neohesperidoside, isorhamnetin-3-O-glucoside, and 3,7-di-O-methylquercetin were annotated for the first time in the leaves of H. courbaril. Therefore, these results showed the potential use of H. courbaril as an antioxidant and point to its use in antimicrobial therapy with an anti-biofilm effect.
Collapse
Affiliation(s)
- Jhonatas Emílio Ribeiro da Cruz
- Institute of Biotechnology, Federal University of Uberlândia, Campus Patos de Minas, Rua Major Jerônimo, 566, sala 205, Patos de Minas 38700-002, MG, Brazil; (H.C.S.); (A.M.d.N.); (R.B.B.); (G.R.O.e.F.); (E.R.M.)
| | - Hellyssa Cataryna Saldanha
- Institute of Biotechnology, Federal University of Uberlândia, Campus Patos de Minas, Rua Major Jerônimo, 566, sala 205, Patos de Minas 38700-002, MG, Brazil; (H.C.S.); (A.M.d.N.); (R.B.B.); (G.R.O.e.F.); (E.R.M.)
| | - Andressa Moreira do Nascimento
- Institute of Biotechnology, Federal University of Uberlândia, Campus Patos de Minas, Rua Major Jerônimo, 566, sala 205, Patos de Minas 38700-002, MG, Brazil; (H.C.S.); (A.M.d.N.); (R.B.B.); (G.R.O.e.F.); (E.R.M.)
| | - Rafaela Barbosa Borges
- Institute of Biotechnology, Federal University of Uberlândia, Campus Patos de Minas, Rua Major Jerônimo, 566, sala 205, Patos de Minas 38700-002, MG, Brazil; (H.C.S.); (A.M.d.N.); (R.B.B.); (G.R.O.e.F.); (E.R.M.)
| | - Marcos de Souza Gomes
- Institute of Chemistry, Federal University of Uberlândia, Campus Patos de Minas, Rua Major Jerônimo, 566, Patos de Minas 38700-002, MG, Brazil;
| | - Guilherme Ramos Oliveira e Freitas
- Institute of Biotechnology, Federal University of Uberlândia, Campus Patos de Minas, Rua Major Jerônimo, 566, sala 205, Patos de Minas 38700-002, MG, Brazil; (H.C.S.); (A.M.d.N.); (R.B.B.); (G.R.O.e.F.); (E.R.M.)
| | - Carla Monteiro Leal
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora 36036-900, MG, Brazil; (C.M.L.); (E.A.F.); (A.A.d.S.F.)
| | - Everton Allan Ferreira
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora 36036-900, MG, Brazil; (C.M.L.); (E.A.F.); (A.A.d.S.F.)
| | - Ademar Alves da Silva Filho
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora 36036-900, MG, Brazil; (C.M.L.); (E.A.F.); (A.A.d.S.F.)
| | - Enyara Rezende Morais
- Institute of Biotechnology, Federal University of Uberlândia, Campus Patos de Minas, Rua Major Jerônimo, 566, sala 205, Patos de Minas 38700-002, MG, Brazil; (H.C.S.); (A.M.d.N.); (R.B.B.); (G.R.O.e.F.); (E.R.M.)
| |
Collapse
|
7
|
Di Lodovico S, Dotta TC, Cellini L, Iezzi G, D’Ercole S, Petrini M. The Antibacterial and Antifungal Capacity of Eight Commercially Available Types of Mouthwash against Oral Microorganisms: An In Vitro Study. Antibiotics (Basel) 2023; 12:antibiotics12040675. [PMID: 37107037 PMCID: PMC10135288 DOI: 10.3390/antibiotics12040675] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
This work aimed to evaluate and compare the antimicrobial actions and effects over time of eight types of mouthwash, based on the impact of chlorhexidine on the main microorganisms that are responsible for oral diseases: Enterococcus faecalis, Pseudomonas aeruginosa, and Candida albicans. The mouthwashes’ antimicrobial action was determined in terms of their minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and time-kill curves at different contact times (10 s, 30 s, 60 s, 5 min, 15 min, 30 min, and 60 min), against selected oral microorganisms. All the mouthwashes showed a notable effect against C. albicans (MICs ranging from 0.02% to 0.09%), and higher MIC values were recorded with P. aeruginosa (1.56% to >50%). In general, the mouthwashes showed similar antimicrobial effects at reduced contact times (10, 30, and 60 s) against all the tested microorganisms, except with P. aeruginosa, for which the most significant effect was observed with a long time (15, 30, and 60 min). The results demonstrate significant differences in the antimicrobial actions of the tested mouthwashes, although all contained chlorhexidine and most of them also contained cetylpyridinium chloride. The relevant antimicrobial effects of all the tested mouthwashes, and those with the best higher antimicrobial action, were recorded by A—GUM® PAROEX®A and B—GUM® PAROEX®, considering their effects against the resistant microorganisms and their MIC values.
Collapse
|
8
|
Evaluation of Antimicrobial Properties and Potential Applications of Pseudomonas gessardii M15 Rhamnolipids towards Multiresistant Staphylococcus aureus. Pharmaceutics 2023; 15:pharmaceutics15020700. [PMID: 36840022 PMCID: PMC9958974 DOI: 10.3390/pharmaceutics15020700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive opportunistic human pathogen responsible for severe infections and thousands of deaths annually, mostly due to its multidrug-resistant (MDR) variants. The cell membrane has emerged as a promising new therapeutic target, and lipophilic molecules, such as biosurfactants, are currently being utilized. Herein, we evaluated the antimicrobial activity of a rhamnolipids mixture produced by the Antarctic marine bacterium Pseudomonas gessardii M15. We demonstrated that our mixture has bactericidal activity in the range of 12.5-50 µg/mL against a panel of clinical MDR isolates of S. aureus, and that the mixture eradicated the bacterial population in 30 min at MIC value, and in 5 min after doubling the concentration. We also tested abilities of RLs to interfere with biofilm at different stages and determined that RLs can penetrate biofilm and kill the bacteria at sub-MICs values. The mixture was then used to functionalize a cotton swab to evaluate the prevention of S. aureus proliferation. We showed that by using 8 µg of rhamnolipids per swab, the entire bacterial load is eradicated, and just 0.5 µg is sufficient to reduce the growth by 99.99%. Our results strongly indicate the possibility of using this mixture as an additive for wound dressings for chronic wounds.
Collapse
|
9
|
Diban F, Di Lodovico S, Di Fermo P, D’Ercole S, D’Arcangelo S, Di Giulio M, Cellini L. Biofilms in Chronic Wound Infections: Innovative Antimicrobial Approaches Using the In Vitro Lubbock Chronic Wound Biofilm Model. Int J Mol Sci 2023; 24:1004. [PMID: 36674518 PMCID: PMC9862456 DOI: 10.3390/ijms24021004] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Chronic wounds have harmful effects on both patients and healthcare systems. Wound chronicity is attributed to an impaired healing process due to several host and local factors that affect healing pathways. The resulting ulcers contain a wide variety of microorganisms that are mostly resistant to antimicrobials and possess the ability to form mono/poly-microbial biofilms. The search for new, effective and safe compounds to handle chronic wounds has come a long way throughout the history of medicine, which has included several studies and trials of conventional treatments. Treatments focus on fighting the microbial colonization that develops in the wound by multidrug resistant pathogens. The development of molecular medicine, especially in antibacterial agents, needs an in vitro model similar to the in vivo chronic wound environment to evaluate the efficacy of antimicrobial agents. The Lubbock chronic wound biofilm (LCWB) model is an in vitro model developed to mimic the pathogen colonization and the biofilm formation of a real chronic wound, and it is suitable to screen the antibacterial activity of innovative compounds. In this review, we focused on the characteristics of chronic wound biofilms and the contribution of the LCWB model both to the study of wound poly-microbial biofilms and as a model for novel treatment strategies.
Collapse
Affiliation(s)
- Firas Diban
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Di Lodovico
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Di Fermo
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Simonetta D’Ercole
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Sara D’Arcangelo
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Mara Di Giulio
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Luigina Cellini
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
10
|
Antimicrobial Combined Action of Graphene Oxide and Light Emitting Diodes for Chronic Wound Management. Int J Mol Sci 2022; 23:ijms23136942. [PMID: 35805944 PMCID: PMC9266944 DOI: 10.3390/ijms23136942] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022] Open
Abstract
Innovative non-antibiotic compounds such as graphene oxide (GO) and light-emitting diodes (LEDs) may represent a valid strategy for managing chronic wound infections related to resistant pathogens. This study aimed to evaluate 630 nm LED and 880 nm LED ability to enhance the GO antimicrobial activity against Staphylococcus aureus- and Pseudomonas aeruginosa-resistant strains in a dual-species biofilm in the Lubbock chronic wound biofilm (LCWB) model. The effect of a 630 nm LED, alone or plus 5-aminolevulinic acid (ALAD)-mediated photodynamic therapy (PDT) (ALAD-PDT), or an 880 nm LED on the GO (50 mg/l) action was evaluated by determining the CFU/mg reductions, live/dead analysis, scanning electron microscope observation, and reactive oxygen species assay. Among the LCWBs, the best effect was obtained with GO irradiated with ALAD-PDT, with percentages of CFU/mg reduction up to 78.96% ± 0.21 and 95.17% ± 2.56 for S. aureus and P. aeruginosa, respectively. The microscope images showed a reduction in the cell number and viability when treated with GO + ALAD-PDT. In addition, increased ROS production was detected. No differences were recorded when GO was irradiated with an 880 nm LED versus GO alone. The obtained results suggest that treatment with GO irradiated with ALAD-PDT represents a valid, sustainable strategy to counteract the polymicrobial colonization of chronic wounds.
Collapse
|