1
|
Conte M, Eletto D, Pannetta M, Esposito R, Monti MC, Morretta E, Tessarz P, Morello S, Tosco A, Porta A. H3K56 acetylation affects Candida albicans morphology and secreted soluble factors interacting with the host. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195048. [PMID: 38885737 DOI: 10.1016/j.bbagrm.2024.195048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
In recent years, epigenetics has been revealed as a mechanism able to modulate the expression of virulence traits in diverse pathogens, including Candida albicans. Indeed, epigenetic regulation can sense environmental changes, leading to the rapid and reversible modulation of gene expression with consequent adaptation to novel environments. How epigenetic changes can impact expression and signalling output, including events associated with mechanisms of morphological transition and virulence, is still poorly studied. Here, using nicotinamide as a sirtuin inhibitor, we explored how the accumulation of the H3K56 acetylation, the most prominent histone acetylation in C. albicans, might affect its interaction with the host. Our experiments demonstrate that H3K56 acetylation profoundly affects the production and/or secretion of soluble factors compromising actin remodelling and cytokine production. ChIP- and RNA-seq analyses highlighted a direct impact of H3K56 acetylation on genes related to phenotypic switching, biofilm formation and cell aggregation. Direct and indirect regulation also involves genes related to cell wall protein biosynthesis, β-glucan and mannan exposure, and hydrolytic secreted enzymes, supporting the hypothesis that the fluctuations of H3K56 acetylation in C. albicans might impair the macrophage response to the yeast and thus promote the host-immune escaping.
Collapse
Affiliation(s)
- Marisa Conte
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy; Ph.D. Program in Drug Discovery and Development, University of Salerno, Fisciano (SA), Italy
| | - Daniela Eletto
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Martina Pannetta
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy; Ph.D. Program in Drug Discovery and Development, University of Salerno, Fisciano (SA), Italy
| | - Roberta Esposito
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy; Department of Pharmacy, University of Naples "Federico II", Italy
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Peter Tessarz
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, University of Cologne, Germany; Cologne Excellence Cluster on Stress Responses in ageing-associated Diseases (CECAD), University of Cologne, Germany; Dept. Of Human Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy.
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy.
| |
Collapse
|
2
|
O'Meara TR. Going fishing: how to get what you want from a fungal genetic screen. mSphere 2024; 9:e0063823. [PMID: 38958459 PMCID: PMC11287994 DOI: 10.1128/msphere.00638-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Five years ago, as I was starting my lab, I wrote about two functional genomic screens in fungi that had inspired me (mSphere 4:e00299-19, https://doi.org/10.1128/mSphere.00299-19). Now, I want to discuss some of the principles and questions that I ask myself and my students as we embark on our own screens. A good screen, whether it is a genetic or chemical screen, can be the starting point for new discovery and an excellent basis for the beginning of a scientific research project. However, screens are often criticized for being "fishing expeditions." To stretch this metaphor to the extreme, this is because people are worried that we do not know how to fish, that we will come home without any fish, bring home the wrong fish, or not know what to do with a fish if we caught it. How you set up the screen and analyze the results determines whether the screen will be useful. In this mini-review, and in the spirit of teaching a scientist to fish, I will discuss recent excellent fungal genetic and chemical screens that illustrate some of the key aspects of a successful screen.
Collapse
Affiliation(s)
- Teresa R. O'Meara
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Sah SK, Yadav A, Kruppa MD, Rustchenko E. Identification of 10 genes on Candida albicans chromosome 5 that control surface exposure of the immunogenic cell wall epitope β-glucan and cell wall remodeling in caspofungin-adapted mutants. Microbiol Spectr 2023; 11:e0329523. [PMID: 37966256 PMCID: PMC10714753 DOI: 10.1128/spectrum.03295-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Candida infections are often fatal in immuno-compromised individuals, resulting in many thousands of deaths per year. Caspofungin has proven to be an excellent anti-Candida drug and is now the frontline treatment for infections. However, as expected, the number of resistant cases is increasing; therefore, new treatment modalities are needed. We are determining metabolic pathways leading to decreased drug susceptibility in order to identify mechanisms facilitating evolution of clinical resistance. This study expands the understanding of genes that modulate drug susceptibility and reveals new targets for the development of novel antifungal drugs.
Collapse
Affiliation(s)
- Sudisht K. Sah
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Anshuman Yadav
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Michael D. Kruppa
- Department of Biomedical Sciences, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Elena Rustchenko
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
4
|
Alonso MF, Bain JM, Rudkin FM, Erwig LP, Brown AJ, Gow NA. The nature of the fungal cargo induces significantly different temporal programmes of macrophage phagocytosis. Cell Surf 2022; 8:100082. [PMID: 36299405 PMCID: PMC9589029 DOI: 10.1016/j.tcsw.2022.100082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Phagocytosis is an essential component of our immune defence against fungal pathogens. Differences in the dynamics of phagocyte migration, recognition, uptake and phagolysosome maturation are dependent on the characteristics of the fungal cargo, and in particular to differences in cell wall composition and cellular morphology. However, studies that have focused on phagocyte interactions with individual fungal species have not enabled comparisons in the kinetics of these interactions to be made between these different species. We therefore used live cell video microscopy to examine the temporal dynamics of phagocytosis for a range of fungal cargoes by thioglycollate-elicited peritoneal macrophages from C57BL/6 mice. Uniform populations of macrophages were challenged at the same time with yeast cells of Candida albicans, Candida glabrata, Saccharomyces cerevisiae and Cryptococcus neoformans (wild-type and an acapsular mutant, cap59Δ), and spores of Aspergillus fumigatus and Mucor circinelloides to enable standardized comparative interactions to be quantified from different stages of phagocytosis. Differences in the rate of uptake of fungal cells varied by up to 26-fold, whilst differences in time to induce phagosome acidification varied by as much as 29-fold. Heat-killing or opsonizing the fungal targets markedly affected the kinetics of the interaction in a species-specific manner. Fungal and macrophage killing assays further revealed cargo-specific differences in phagocytosis and diversity in fungal evasion mechanisms. Therefore, simultaneous assessment of the interaction of macrophages with different fungal pathogens highlighted major differences in the kinetics and growth responses during fungus-phagocyte interactions that are likely to impact on pathogenesis and virulence.
Collapse
Affiliation(s)
- María Fernanda Alonso
- The Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Judith M. Bain
- The Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Fiona M. Rudkin
- The Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lars P. Erwig
- The Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J.P. Brown
- The Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Neil A.R. Gow
- The Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
5
|
Zhao S, Shang A, Guo M, Shen L, Han Y, Huang X. The advances in the regulation of immune microenvironment by Candida albicans and macrophage cross-talk. Front Microbiol 2022; 13:1029966. [PMID: 36466634 PMCID: PMC9717684 DOI: 10.3389/fmicb.2022.1029966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/07/2022] [Indexed: 04/04/2024] Open
Abstract
Candida albicans (C. albicans) is the most common causative agent of invasive fungal infections in hospitals. The body defends against and eliminates C. albicans infection by various mechanisms of immune response, and the latter mechanism of immune evasion is a major challenge in the clinical management of C. albicans infection. The role of macrophages in combating C. albicans infection has only recently been recognized, but the mechanisms remain to be elucidated. This review focuses on the interaction between C. albicans and macrophages (macrophages), which causes the body to generate an immune response or C. albicans immune escape, and then regulates the body's immune microenvironment, to explore the effect of C. albicans virulence resistance vs. macrophage killing and clarify the role and mechanism of C. albicans pathogenesis. In general, a thorough understanding of the molecular principles driving antifungal drug resistance is essential for the development of innovative treatments that can counteract both existing and emerging fungal threats.
Collapse
Affiliation(s)
- Shuo Zhao
- Department of Dermatology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| | - Anquan Shang
- Department of Laboratory Medicine, The Second People’s Hospital of Lianyungang, Lianyungang, China
| | - Mengchen Guo
- Department of Dermatology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| | - Liangliang Shen
- Department of Dermatology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| | - Yu Han
- Department of Dermatology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| | - Xin Huang
- Department of Dermatology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|