1
|
Fukasawa Y, Kimura S, Kominami Y, Takagi M, Matsukura K, Makoto K, Suzuki SN, Takemoto S, Tanaka N, Jomura M, Kadowaki K, Ushio M, Kinuura H, Yamashita S. Oak Wilt Disease May Reduce the Initial Decay Rate of Dead Quercus serrata Stems by Altering Fungal Communities in the Wood. Environ Microbiol 2025; 27:e70026. [PMID: 39777839 PMCID: PMC11707560 DOI: 10.1111/1462-2920.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/10/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Oak wilt causes severe dieback of Quercus serrata, a dominant tree species in the lowlands across Japan. This study evaluated the effects of oak wilt on the wood-inhabiting fungal community and the decay rate of deadwood using a field monitoring experiment. We analysed the fungal metabarcoding community from 1200 wood samples obtained from 120 experimental logs from three forest sites at five different time points during the initial 1.5 years of the experiment. Death due to wilt significantly influenced the fungal community composition and reduced fungal diversity, likely due to the dominance of a limited number of species. The operational taxonomic unit richness, occurrence frequency, and DNA copy number of white rot fungi were also enhanced on the logs killed by wilt, depending on the sites. Structural equation modelling suggested that the wilt-initiated changes in the fungal community reduced the decay rate of oak logs. Temperature and wood moisture also affected the fungal community and log decomposition. These results suggest that, in addition to the direct effect of climate, oak wilt indirectly affects log decomposition by structuring the fungal community. Continuous monitoring is essential to evaluate the longer-term effects of oak wilt on the fungal decomposition of wood.
Collapse
Affiliation(s)
- Yu Fukasawa
- Graduate School of Agricultural ScienceTohoku UniversityOsakiMiyagiJapan
| | - Satsuki Kimura
- Graduate School of Agricultural ScienceTohoku UniversityOsakiMiyagiJapan
| | - Yuji Kominami
- Forestry and Forest Products Research InstituteTsukubaIbarakiJapan
| | | | - Kimiyo Matsukura
- College of Bioresource Sciences, Nihon UniversityFujisawaKanagawaJapan
| | - Kobayashi Makoto
- Field Science Center for Northern BiosphereHokkaido UniversityHoronobeHokkaidoJapan
| | - Satoshi N. Suzuki
- The University of Tokyo Hokkaido ForestGraduate School of Agricultural and Life Sciences, The University of TokyoFuranoHokkaidoJapan
| | - Shuhei Takemoto
- The University of Tokyo Tanashi ForestGraduate School of Agricultural and Life Sciences, The University of TokyoNishitokyoTokyoJapan
| | - Nobuaki Tanaka
- Ecohydrology Research Institute, The University of Tokyo ForestsGraduate School of Agricultural and Life Sciences, The University of TokyoSetoAichiJapan
| | - Mayuko Jomura
- College of Bioresource Sciences, Nihon UniversityFujisawaKanagawaJapan
| | | | - Masayuki Ushio
- Department of Ocean ScienceThe Hong Kong University of Science and TechnologyKowloonHong Kong SAR
| | - Haruo Kinuura
- Forestry and Forest Products Research InstituteTsukubaIbarakiJapan
| | | |
Collapse
|
2
|
Møller C, March-Salas M, De Frenne P, Scheepens JF. Local adaptation and phenotypic plasticity in two forest understorey herbs in response to forest management intensity. AOB PLANTS 2025; 17:plae061. [PMID: 39850953 PMCID: PMC11752646 DOI: 10.1093/aobpla/plae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/18/2024] [Indexed: 01/25/2025]
Abstract
Local adaptation is a common phenomenon that helps plant populations to adjust to broad-scale environmental heterogeneity. Given the strong effect of forest management on the understorey microenvironment and often long-term effects of forest management actions, it seems likely that understorey herbs may have locally adapted to the practiced management regime and induced environmental variation. We investigated the response of Anemone nemorosa and Milium effusum to forest management using a transplant experiment along a silvicultural management intensity gradient. Genets were sampled from sites with contrasting management intensities and transplanted sympatrically, near allopatrically and far allopatrically along the management intensity gradient to test for local adaptation and phenotypic plasticity, as well as to sites where the species were absent to test for recruitment versus dispersal limitations. We then measured survival and fitness traits over two growing seasons. We found only little evidence of local adaptation in A. nemorosa and M. effusum, whereas various traits in both species showed linear plastic changes in response to transplantation along the forest management intensity gradient. Furthermore, A. nemorosa performed worse when transplanted to unoccupied sites, suggesting recruitment limitation, whereas M. effusum performed better in unoccupied sites, suggesting dispersal limitation. Altogether, our results underpin the importance of forest management to indirectly drive phenotypic variation among populations of forest plants.
Collapse
Affiliation(s)
- Charlotte Møller
- Plant Evolutionary Ecology, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, Kaisaniemenranta 2 FI-00014, Finland
| | - Martí March-Salas
- Plant Evolutionary Ecology, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
- Area of Biodiversity and Conservation, Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos-ESCET, Tulippán s/n. 28933 Móstoles, Madrid, Spain
- Instituto de Investigación en Cambio Global (IICG-URJC), Universidad Rey Juan Carlos, Calle Tullipán s/n 28933, Móstoles, Madrid, Spain
| | - Pieter De Frenne
- Forest & Nature Lab, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090 Gontrode, Belgium
| | - J F Scheepens
- Plant Evolutionary Ecology, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Bielčik M, Schlägel UE, Schäfer M, Aguilar-Trigueros CA, Lakovic M, Sosa-Hernández MA, Hammer EC, Jeltsch F, Rillig MC. Aligning spatial ecological theory with the study of clonal organisms: the case of fungal coexistence. Biol Rev Camb Philos Soc 2024; 99:2211-2233. [PMID: 39073180 DOI: 10.1111/brv.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Established ecological theory has focused on unitary organisms, and thus its concepts have matured into a form that often hinders rather than facilitates the ecological study of modular organisms. Here, we use the example of filamentous fungi to develop concepts that enable integration of non-unitary (modular) organisms into the established community ecology theory, with particular focus on its spatial aspects. In doing so, we provide a link between fungal community ecology and modern coexistence theory (MCT). We first show how community processes and predictions made by MCT can be used to define meaningful scales in fungal ecology. This leads to the novel concept of the unit of community interactions (UCI), a promising conceptual tool for applying MCT to communities of modular organisms with indeterminate clonal growth and hierarchical individuality. We outline plausible coexistence mechanisms structuring fungal communities, and show at what spatial scales and in what habitats they are most likely to act. We end by describing challenges and opportunities for empirical and theoretical research in fungal competitive coexistence.
Collapse
Affiliation(s)
- Miloš Bielčik
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research (ZALF), Eberswalder Str.84, Müncheberg, 15374, Germany
| | - Ulrike E Schlägel
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
| | - Merlin Schäfer
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
- Federal Agency for Nature Conservation, Alte Messe 6, Leipzig, 04103, Germany
| | - Carlos A Aguilar-Trigueros
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Building R2, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Seminaarinkatu 15, Jyväskylä, 40014, Finland
| | - Milica Lakovic
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| | - Moisés A Sosa-Hernández
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| | - Edith C Hammer
- Department of Biology, Microbial Ecology, Lund University, Ekologihuset, Sölvegatan 37, Lund, 22362, Sweden
| | - Florian Jeltsch
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| |
Collapse
|
4
|
Schreiber J, Baldrian P, Brabcová V, Brandl R, Kellner H, Müller J, Roy F, Bässler C, Krah FS. Effects of experimental canopy openness on wood-inhabiting fungal fruiting diversity across succession. Sci Rep 2024; 14:16135. [PMID: 38997416 PMCID: PMC11245472 DOI: 10.1038/s41598-024-67216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024] Open
Abstract
While the succession of terrestrial plant communities is well studied, less is known about succession on dead wood, especially how it is affected by environmental factors. While temperate forests face increasing canopy mortality, which causes considerable changes in microclimates, it remains unclear how canopy openness affects fungal succession. Here, we used a large real-world experiment to study the effect of closed and opened canopy on treatment-based alpha and beta fungal fruiting diversity. We found increasing diversity in early and decreasing diversity at later stages of succession under both canopies, with a stronger decrease under open canopies. However, the slopes of the diversity versus time relationships did not differ significantly between canopy treatments. The community dissimilarity remained mainly stable between canopies at ca. 25% of species exclusively associated with either canopy treatment. Species exclusive in either canopy treatment showed very low number of occupied objects compared to species occurring in both treatments. Our study showed that canopy loss subtly affected fungal fruiting succession on dead wood, suggesting that most species in the local species pool are specialized or can tolerate variable conditions. Our study indicates that the fruiting of the fungal community on dead wood is resilient against the predicted increase in canopy loss in temperate forests.
Collapse
Affiliation(s)
- Jasper Schreiber
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Conservation Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, 14200, Prague, Czech Republic
| | - Vendula Brabcová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, 14200, Prague, Czech Republic
| | - Roland Brandl
- Faculty of Biology, Department of Ecology, Animal Ecology, Philips University of Marburg, 35032, Marburg, Germany
| | - Harald Kellner
- International Institute Zittau, Department of Bio- and Environmental Sciences, Technical University Dresden, 02763, Zittau, Germany
| | - Jörg Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology Biocenter, University of Würzburg, 96181, Rauhenebrach, Germany
- Bavarian Forest National Park, Grafenau, Germany
| | - Friederike Roy
- International Institute Zittau, Department of Bio- and Environmental Sciences, Technical University Dresden, 02763, Zittau, Germany
| | - Claus Bässler
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Conservation Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Fungal Ecology and BayCEER, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
- Bavarian Forest National Park, Grafenau, Germany
| | - Franz-Sebastian Krah
- Fungal Ecology and BayCEER, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany.
- Global Change Research Institute of the Czech Academy of Sciences, 603 00, Brno, Czech Republic.
| |
Collapse
|
5
|
Mamadashvili G, Brin A, Chumak M, Diedus V, Drössler L, Förster B, Georgiev KB, Ghrejyan T, Hleb R, Kalashian M, Kamburov I, Karagyan G, Kevlishvili J, Khutsishvili Z, Larrieu L, Mazmanyan M, Petrov PI, Tabunidze L, Bässler C, Müller J. Drivers of wood-inhabiting fungal diversity in European and Oriental beech forests. Ecol Evol 2024; 14:e11660. [PMID: 38962025 PMCID: PMC11220834 DOI: 10.1002/ece3.11660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024] Open
Abstract
The hyperdiverse wood-inhabiting fungi play a crucial role in the global carbon cycle, but often are threatened by deadwood removal, particularly in temperate forests dominated by European beech (Fagus sylvatica) and Oriental beech (Fagus orientalis). To study the impact of abiotic drivers, deadwood factors, forest management and biogeographical patterns in forests of both beech species on fungal composition and diversity, we collected 215 deadwood-drilling samples in 18 forests from France to Armenia and identified fungi by meta-barcoding. In our analyses, we distinguished the patterns driven by rare, common, and dominant species using Hill numbers. Despite a broad overlap in species, the fungal composition with focus on rare species was determined by Fagus species, deadwood type, deadwood diameter, precipitation, temperature, and management status in decreasing order. Shifting the focus on common and dominant species, only Fagus species, both climate variables and deadwood type remained. The richness of species within the deadwood objects increased significantly only with decay stage. Gamma diversity in European beech forests was higher than in Oriental beech forests. We revealed the highest gamma diversity for old-growth forests of European beech when focusing on dominant species. Our results implicate that deadwood retention efforts, focusing on dominant fungi species, critical for the decay process, should be distributed across precipitation and temperature gradients and both Fagus species. Strategies focusing on rare species should additionally focus on different diameters and on the conservation of old-growth forests.
Collapse
Affiliation(s)
- Giorgi Mamadashvili
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical BiologyBiocenter, University of WürzburgRauhenebrachGermany
| | - Antoine Brin
- Sciences and digital departmentUniversity of Toulouse, Ecole d'Ingénieurs de PURPAN, UMR INRAE‐INPT DYNAFORToulouseFrance
| | - Maksym Chumak
- Department of Entomology and Biodiversity PreservationUzhhorod National UniversityUzhhorodUkraine
| | - Valeriia Diedus
- State Museum of Natural History, National Academy of Sciences of UkraineLvivUkraine
| | - Lars Drössler
- Forestry Research and Competence Center ThüringenForst AöRGothaGermany
| | - Bernhard Förster
- Chair for Strategic Landscape Planning and ManagementTechnical University of MunichFreisingGermany
| | - Kostadin B. Georgiev
- Hessian State Agency for Nature Conservation, Environment and GeologyHesseGermany
| | - Tigran Ghrejyan
- Laboratory of Entomology and Soil ZoologyScientific Center of Zoology and Hydroecology NAS RAYerevanArmenia
| | - Ruslan Hleb
- Forestry laboratoryCarpathian Biosphere ReserveRakhivUkraine
| | - Mark Kalashian
- Laboratory of Entomology and Soil ZoologyScientific Center of Zoology and Hydroecology NAS RAYerevanArmenia
| | - Ivan Kamburov
- Strandzha Nature Park DirectorateMalko TarnovoBulgaria
| | - Gayane Karagyan
- Laboratory of Entomology and Soil ZoologyScientific Center of Zoology and Hydroecology NAS RAYerevanArmenia
| | | | | | - Laurent Larrieu
- Université de Toulouse, INRAE, UMR DYNAFORCastanet‐TolosanFrance
- CNPF‐CRPF OccitanieFrance
| | - Meri Mazmanyan
- Laboratory of Entomology and Soil ZoologyScientific Center of Zoology and Hydroecology NAS RAYerevanArmenia
| | - Peter I. Petrov
- University of Forestry Sofia, Field Base PetrohanBarziaBulgaria
| | | | - Claus Bässler
- Ecology of Fungi, Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
- Conservation and Research DepartmentBavarian Forest National ParkGrafenauGermany
| | - Jörg Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical BiologyBiocenter, University of WürzburgRauhenebrachGermany
- Conservation and Research DepartmentBavarian Forest National ParkGrafenauGermany
| |
Collapse
|
6
|
Bosch J, Dobbler PT, Větrovský T, Tláskal V, Baldrian P, Brabcová V. Decomposition of Fomes fomentatius fruiting bodies - transition of healthy living fungus into a decayed bacteria-rich habitat is primarily driven by Arthropoda. FEMS Microbiol Ecol 2024; 100:fiae044. [PMID: 38640440 PMCID: PMC11030162 DOI: 10.1093/femsec/fiae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/06/2024] [Accepted: 03/28/2024] [Indexed: 04/21/2024] Open
Abstract
Fomes fomentarius is a widespread, wood-rotting fungus of temperate, broadleaved forests. Although the fruiting bodies of F. fomentarius persist for multiple years, little is known about its associated microbiome or how these recalcitrant structures are ultimately decomposed. Here we used metagenomics and metatranscriptomics to analyse the microbial community associated with healthy living and decomposing F. fomentarius fruiting bodies to assess the functional potential of the fruiting body-associated microbiome and to determine the main players involved in fruiting body decomposition. F. fomentarius sequences in the metagenomes were replaced by bacterial sequences as the fruiting body decomposed. Most CAZymes expressed in decomposing fruiting bodies targeted components of the fungal cell wall with almost all chitin-targeting sequences, plus a high proportion of beta-glucan-targeting sequences, belonging to Arthropoda. We suggest that decomposing fruiting bodies of F. fomentarius represent a habitat rich in bacteria, while its decomposition is primarily driven by Arthropoda. Decomposing fruiting bodies thus represent a specific habitat supporting both microorganisms and microfauna.
Collapse
Affiliation(s)
- Jason Bosch
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czechia
| | - Priscila Thiago Dobbler
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czechia
| | - Tomáš Větrovský
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czechia
| | - Vojtěch Tláskal
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czechia
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czechia
| | - Vendula Brabcová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czechia
| |
Collapse
|
7
|
Müller M, Kües U, Budde KB, Gailing O. Applying molecular and genetic methods to trees and their fungal communities. Appl Microbiol Biotechnol 2023; 107:2783-2830. [PMID: 36988668 PMCID: PMC10106355 DOI: 10.1007/s00253-023-12480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in forest ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi. KEY POINTS: • Current knowledge of genetic methods applied to forest trees and associated fungi. • Genomic methods are essential in conservation, breeding, management, and research. • Important role of phytobiomes for trees and their ecosystems.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany.
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Katharina B Budde
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
8
|
Shumskaya M, Lorusso N, Patel U, Leigh M, Somervuo P, Schigel D. MycoPins: a metabarcoding-based method to monitor fungal colonization of fine woody debris. MycoKeys 2023; 96:77-95. [PMID: 37214177 PMCID: PMC10196935 DOI: 10.3897/mycokeys.96.101033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/02/2023] [Indexed: 05/24/2023] Open
Abstract
The MycoPins method described here is a rapid and affordable protocol to monitor early colonization events in communities of wood-inhabiting fungi in fine woody debris. It includes easy to implement field sampling techniques and sample processing, followed by data processing, and analysis of the development of early dead wood fungal communities. The method is based on fieldwork from a time series experiment on standard sterilized colonization targets followed by the metabarcoding analysis and automated molecular identification of species. This new monitoring method through its simplicity, moderate costs, and scalability paves a way for a broader and scalable project pipeline. MycoPins establishes a standard routine for research stations or regularly visited field sites for monitoring of fungal colonization of woody substrates. The routine uses widely available consumables and therefore presents a unifying method for monitoring of fungi of this type.
Collapse
Affiliation(s)
- Maria Shumskaya
- Department of Biology, Kean University, Union, USAKean UniversityUnionUnited States of America
| | - Nicholas Lorusso
- Department of Biology, Kean University, Union, USAKean UniversityUnionUnited States of America
- University of North Texas at Dallas, Dallas, USAUniversity of North Texas at DallasDallasUnited States of America
| | - Urvi Patel
- Department of Biology, Kean University, Union, USAKean UniversityUnionUnited States of America
| | - Madison Leigh
- Department of Biology, Kean University, Union, USAKean UniversityUnionUnited States of America
| | - Panu Somervuo
- Biological and Environmental Sciences, University of Helsinki, Helsinki, FinlandUniversity of HelsinkiHelsinkiFinland
| | - Dmitry Schigel
- Biological and Environmental Sciences, University of Helsinki, Helsinki, FinlandUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
9
|
Baldrian P, López-Mondéjar R, Kohout P. Forest microbiome and global change. Nat Rev Microbiol 2023:10.1038/s41579-023-00876-4. [PMID: 36941408 DOI: 10.1038/s41579-023-00876-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Forests influence climate and mitigate global change through the storage of carbon in soils. In turn, these complex ecosystems face important challenges, including increases in carbon dioxide, warming, drought and fire, pest outbreaks and nitrogen deposition. The response of forests to these changes is largely mediated by microorganisms, especially fungi and bacteria. The effects of global change differ among boreal, temperate and tropical forests. The future of forests depends mostly on the performance and balance of fungal symbiotic guilds, saprotrophic fungi and bacteria, and fungal plant pathogens. Drought severely weakens forest resilience, as it triggers adverse processes such as pathogen outbreaks and fires that impact the microbial and forest performance for carbon storage and nutrient turnover. Nitrogen deposition also substantially affects forest microbial processes, with a pronounced effect in the temperate zone. Considering plant-microorganism interactions would help predict the future of forests and identify management strategies to increase ecosystem stability and alleviate climate change effects. In this Review, we describe the impact of global change on the forest ecosystem and its microbiome across different climatic zones. We propose potential approaches to control the adverse effects of global change on forest stability, and present future research directions to understand the changes ahead.
Collapse
Affiliation(s)
- Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Rubén López-Mondéjar
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Soil and Water Conservation and Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - Petr Kohout
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|