1
|
Fryer T, Wolff DS, Overath MD, Schäfer E, Laustsen AH, Jenkins TP, Andersen C. Post-assembly Plasmid Amplification for Increased Transformation Yields in E. coli and S. cerevisiae. CHEM & BIO ENGINEERING 2025; 2:87-96. [PMID: 40041006 PMCID: PMC11873849 DOI: 10.1021/cbe.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 03/06/2025]
Abstract
Many biological disciplines rely upon the transformation of host cells with heterologous DNA to edit, engineer, or examine biological phenotypes. Transformation of model cell strains (Escherichia coli) under model conditions (electroporation of circular supercoiled plasmid DNA; typically pUC19) can achieve >1010 transformants/μg DNA. Yet outside of these conditions, e.g., work with relaxed plasmid DNA from in vitro assembly reactions (cloned DNA) or nonmodel organisms, the efficiency of transformation can drop by multiple orders of magnitude. Overcoming these inefficiencies requires cost- and time-intensive processes, such as generating large quantities of appropriately formatted input DNA or transforming many aliquots of cells in parallel. We sought to simplify the generation of large quantities of appropriately formatted input cloned DNA by using rolling circle amplification (RCA) and treatment with specific endonucleases to generate an efficiently transformable linear DNA product for in vivo circularization in host cells. We achieved an over 6500-fold increase in the yield of input DNA, and demonstrate that the use of a nicking endonuclease to generate homologous single-stranded ends increases the efficiency of E. coli chemical transformation compared to both linear DNA with double-stranded homologous ends and circular Golden-Gate assembly products. Meanwhile, the use of a restriction endonuclease to generate linear DNA with double-stranded homologous ends increases the efficiency of chemical and electrotransformation of Saccharomyces cerevisiae. Importantly, we also optimized the process such that both RCA and endonuclease treatment occur efficiently in the same buffer, streamlining the workflow and reducing product loss through purification steps. We expect that our approach could have utility beyond E. coli and S. cerevisiae and be applicable to areas such as directed evolution, genome engineering, and the manipulation of alternative organisms with even poorer transformation efficiencies.
Collapse
Affiliation(s)
- Thomas Fryer
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plads 239, Lyngby, Hovedstaden DK 2800, Denmark
- Department
of Molecular Discovery, R&D, Novozymes
A/S, Bagsvaerd, Hovedstaden DK 2880, Denmark
| | - Darian S. Wolff
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plads 239, Lyngby, Hovedstaden DK 2800, Denmark
- Department
of Molecular Discovery, R&D, Novozymes
A/S, Bagsvaerd, Hovedstaden DK 2880, Denmark
| | - Max D. Overath
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plads 239, Lyngby, Hovedstaden DK 2800, Denmark
| | - Elena Schäfer
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Andreas H. Laustsen
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plads 239, Lyngby, Hovedstaden DK 2800, Denmark
| | - Timothy P. Jenkins
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plads 239, Lyngby, Hovedstaden DK 2800, Denmark
| | - Carsten Andersen
- Department
of Molecular Discovery, R&D, Novozymes
A/S, Bagsvaerd, Hovedstaden DK 2880, Denmark
| |
Collapse
|
2
|
Bertelsen A, Ehrmann AK, Bayer C, Batth TS, Olsen JV, Nørholm MHH. Restructuring a Complex Genetic Function on Episomal Vectors in Escherichia coli. ACS Synth Biol 2025; 14:161-170. [PMID: 39703023 PMCID: PMC11745164 DOI: 10.1021/acssynbio.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Genetic functions have evolved over long timescales and can be encoded by multiple genes dispersed in different locations in genomes, and although contemporary molecular biology enables control over single genes, more complex genetic functions remain challenging. Here, we study the restructuring and mobilization of a complex genetic function encoded by 10 genes, originally expressed from four operons and two loci on the Escherichia coli genome. We observe subtle phenotypic differences and reduced fitness when expressed from episomal DNA and demonstrate that mutations in the transcriptional machinery are necessary for successful implementation in different bacteria. The work provides new approaches for advanced genome editing and constitutes a first step toward modularization and genome-level engineering of complex genetic functions.
Collapse
Affiliation(s)
- Andreas
B. Bertelsen
- The Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Anja K. Ehrmann
- The Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Carolyn Bayer
- The Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Tanveer S. Batth
- The Novo
Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen
N 2200, Denmark
| | - Jesper V. Olsen
- The Novo
Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen
N 2200, Denmark
| | - Morten H. H. Nørholm
- The Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
3
|
Liu M, Ge W, Zhong G, Yang Y, Xun L, Xia Y. Dual-Plasmid Mini-Tn5 System to Stably Integrate Multicopy of Target Genes in Escherichia coli. ACS Synth Biol 2024; 13:3523-3538. [PMID: 39418641 DOI: 10.1021/acssynbio.4c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The efficiency of valuable metabolite production by engineered microorganisms underscores the importance of stable and controllable gene expression. While plasmid-based methods offer flexibility, integrating genes into host chromosomes can establish stability without selection pressure. However, achieving site-directed multicopy integration presents challenges, including site selection and stability. We introduced a stable multicopy integration method by using a novel dual-plasmid mini-Tn5 system to insert genes into Escherichia coli's genome. The gene of interest was combined with a removable antibiotic resistance gene. After the selection of bacteria with inserted genes, the antibiotic resistance gene was removed. Optimizations yielded an integration efficiency of approximately 5.5 × 10-3 per recipient cell in a single round. Six rounds of integration resulted in 19 and 5 copies of the egfp gene in the RecA+ strain MG1655 and the RecA- strain XL1-Blue MRF', respectively. Additionally, we integrated a polyhydroxybutyrate (PHB) synthesis gene cluster into E. coli MG1655, yielding an 8-copy integration strain producing more PHB than strains with the cluster on a high-copy plasmid. The method was efficient in generating gene insertions in various E. coli strains, and the inserted genes were stable after extended culture. This stable, high-copy integration tool offers potential for diverse applications in synthetic biology.
Collapse
Affiliation(s)
- Menghui Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Wei Ge
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
- Clinical Laboratory, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong 266024, People's Republic of China
| | - Guomei Zhong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Yuqing Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, United States
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| |
Collapse
|
4
|
Ferreira S, Balola A, Sveshnikova A, Hatzimanikatis V, Vilaça P, Maia P, Carreira R, Stoney R, Carbonell P, Souza CS, Correia J, Lousa D, Soares CM, Rocha I. Computer-aided design and implementation of efficient biosynthetic pathways to produce high added-value products derived from tyrosine in Escherichia coli. Front Bioeng Biotechnol 2024; 12:1360740. [PMID: 38978715 PMCID: PMC11228882 DOI: 10.3389/fbioe.2024.1360740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Developing efficient bioprocesses requires selecting the best biosynthetic pathways, which can be challenging and time-consuming due to the vast amount of data available in databases and literature. The extension of the shikimate pathway for the biosynthesis of commercially attractive molecules often involves promiscuous enzymes or lacks well-established routes. To address these challenges, we developed a computational workflow integrating enumeration/retrosynthesis algorithms, a toolbox for pathway analysis, enzyme selection tools, and a gene discovery pipeline, supported by manual curation and literature review. Our focus has been on implementing biosynthetic pathways for tyrosine-derived compounds, specifically L-3,4-dihydroxyphenylalanine (L-DOPA) and dopamine, with significant applications in health and nutrition. We selected one pathway to produce L-DOPA and two different pathways for dopamine-one already described in the literature and a novel pathway. Our goal was either to identify the most suitable gene candidates for expression in Escherichia coli for the known pathways or to discover innovative pathways. Although not all implemented pathways resulted in the accumulation of target compounds, in our shake-flask experiments we achieved a maximum L-DOPA titer of 0.71 g/L and dopamine titers of 0.29 and 0.21 g/L for known and novel pathways, respectively. In the case of L-DOPA, we utilized, for the first time, a mutant version of tyrosinase from Ralstonia solanacearum. Production of dopamine via the known biosynthesis route was accomplished by coupling the L-DOPA pathway with the expression of DOPA decarboxylase from Pseudomonas putida, resulting in a unique biosynthetic pathway never reported in literature before. In the context of the novel pathway, dopamine was produced using tyramine as the intermediate compound. To achieve this, tyrosine was initially converted into tyramine by expressing TDC from Levilactobacillus brevis, which, in turn, was converted into dopamine through the action of the enzyme encoded by ppoMP from Mucuna pruriens. This marks the first time that an alternative biosynthetic pathway for dopamine has been validated in microbes. These findings underscore the effectiveness of our computational workflow in facilitating pathway enumeration and selection, offering the potential to uncover novel biosynthetic routes, thus paving the way for other target compounds of biotechnological interest.
Collapse
Affiliation(s)
- Sofia Ferreira
- Systems and Synthetic Biology Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Alexandra Balola
- Systems and Synthetic Biology Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Anastasia Sveshnikova
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Paulo Vilaça
- SilicoLife-Computational Biology Solutions for the Life Sciences, Braga, Portugal
| | - Paulo Maia
- SilicoLife-Computational Biology Solutions for the Life Sciences, Braga, Portugal
| | - Rafael Carreira
- SilicoLife-Computational Biology Solutions for the Life Sciences, Braga, Portugal
| | - Ruth Stoney
- Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Pablo Carbonell
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
- Institute for Integrative Systems Biology I2SysBio, Universitat de València-CSIC: Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Caio Silva Souza
- Protein Modelling Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - João Correia
- Protein Modelling Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Diana Lousa
- Protein Modelling Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Cláudio M Soares
- Protein Modelling Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Isabel Rocha
- Systems and Synthetic Biology Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
5
|
Farahmand S, SamadiAfshar S, Hosseini L. TA-Cloning for Diabetes Treatment: Expressing Corynebacterium Malic Enzyme Gene in E. coli. Curr Microbiol 2024; 81:167. [PMID: 38727744 DOI: 10.1007/s00284-024-03686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/02/2024] [Indexed: 05/16/2024]
Abstract
Diabetes mellitus represents a persistent metabolic condition marked by heightened levels of blood glucose, presenting a considerable worldwide health concern, and finding targeted treatment for it is a crucial priority for global health. Gram-positive aerobic bacteria, predominantly inhabiting water and soil, are known carriers of various enzyme-encoding genetic material, which includes the malic enzyme gene that plays a role in insulin secretion. Corynebacterium glutamicum bacteria (ATCC 21799) were acquired from the Pasteur Institute and confirmed using microbiological and molecular tests, including DNA extraction. After identification, gene purification and cloning of the maeB gene were performed using the TA Cloning method. Additionally, the enhancement of enzyme expression was assessed using the expression vector pET-28a, and validation of simulation results was monitored through a real-time PCR analysis. Based on previous studies, the malic enzyme plays a pivotal role in maintaining glucose homeostasis, and increased expression of this enzyme has been associated with enhanced insulin sensitivity. However, the production of malic enzyme has encountered numerous challenges and difficulties. This study successfully isolated the malic enzyme genes via Corynebacterium glutamicum and introduced them into Escherichia coli for high-yield production. According to the results, the optimum temperature for the activity of enzymes has been identified as 39 °C.
Collapse
Affiliation(s)
| | - Saber SamadiAfshar
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ladan Hosseini
- Department of Biology, Payame Noor University (PNU), Tehran, Iran
| |
Collapse
|
6
|
Lu J, Wang G, Yang C, Peng Z, Yang L, Du B, Guo C, Sui S, Wang J, Li J, Wang R, Wang J. Study on the construction technology of β-alanine synthesizing Escherichia coli based on cellulosome assembly. Front Bioeng Biotechnol 2023; 11:1202483. [PMID: 37334270 PMCID: PMC10273014 DOI: 10.3389/fbioe.2023.1202483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction: β-Alanine is the only β-amino acid in nature; it is widely used in food additives, medicines, health products, and surfactants. To avoid pollution caused by traditional production methods, the synthesis of β-alanine has been gradually replaced by microbial fermentation and enzyme catalysis, which is a green, mild, and high-yield biosynthesis method. Methods: In this study, we constructed an Escherichia coli recombinant strain for efficient β-alanine production using glucose as the raw material. The microbial synthesis pathway of L-lysine-producing strain, Escherichia coli CGMCC 1.366, was modified using gene editing by knocking out the aspartate kinase gene, lysC. The catalytic efficiency and product synthesis efficiency were improved by assembling key enzymes with cellulosome. Results: By-product accumulation was reduced by blocking the L-lysine production pathway, thereby increasing the yield of β-alanine. In addition, catalytic efficiency was improved by the two-enzyme method to further increase the β-alanine content. The key cellulosome elements, dockerin (docA) and cohesin (cohA), were combined with L-aspartate-α-decarboxylase (bspanD) from Bacillus subtilis and aspartate aminotransferase (aspC) from E.coli to improve the catalytic efficiency and expression level of the enzyme. β-alanine production reached 7.439 mg/L and 25.87 mg/L in the two engineered strains. The β-alanine content reached 755.465 mg/L in a 5 L fermenter. Discussion: The content of β-alanine synthesized by constructed β-alanine engineering strains were 10.47 times and 36.42 times higher than the engineered strain without assembled cellulosomes, respectively. This research lays the foundation for the enzymatic production of β-alanine using a cellulosome multi-enzyme self-assembly system.
Collapse
Affiliation(s)
- Jie Lu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Guodong Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Cuiping Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Zehao Peng
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Lu Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Bowen Du
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Chuanzhuang Guo
- Zhucheng Dongxiao Biotechnology Co., Ltd., Zhucheng, Shandong, China
| | - Songsen Sui
- Zhucheng Dongxiao Biotechnology Co., Ltd., Zhucheng, Shandong, China
| | - Jianbin Wang
- Zhucheng Dongxiao Biotechnology Co., Ltd., Zhucheng, Shandong, China
| | - Junlin Li
- Zhucheng Dongxiao Biotechnology Co., Ltd., Zhucheng, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| |
Collapse
|
7
|
An Optimized Transformation Protocol for Escherichia coli BW3KD with Supreme DNA Assembly Efficiency. Microbiol Spectr 2022; 10:e0249722. [PMID: 36317996 PMCID: PMC9769673 DOI: 10.1128/spectrum.02497-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
DNA cloning requires two steps: the assembly of recombinant DNA molecules and the transformation of the product into a host organism for replication. High efficiencies in both processes can increase the success rate. Recently, we developed an Escherichia coli BW3KD strain with higher transformation efficiency than commonly used cloning strains. Here, we further developed a simple method named TSS-HI (transformation storage solution optimized by Hannahan and Inoue method) for competent cell preparation, which combined the advantages of three common methods for operational simplicity and high transformation efficiency. When competent BW3KD cells were prepared using this developed method, the transformation efficiency reached up to (7.21 ± 1.85) × 109 CFU/μg DNA, which exceeded the levels of commercial chemically competent cells and homemade electrocompetent cells. BW3KD cells formed colonies within 7 h on lysogeny broth agar plates, quicker than the well-known fast-growing E. coli cloning strain Mach1. The competent cells worked effectively for the transformation of assembled DNA of 1 to 7 fragments in one step and promoted efficiencies of transformation or cloning with large plasmids. The cloning efficiency of BW3KD cells prepared by this method increased up to 828-fold over that of E. coli XL1-Blue MRF' cells prepared by a common method. Thus, competent cells are suitable for different cloning jobs and should help with the increased demand for DNA assembly in biological studies and biotechnology. IMPORTANCE DNA transformation is commonly used in cloning; however, high transformation efficiency becomes a limiting factor in many applications, such as the construction of CRISPR and DNA libraries, the assembly of multiple fragments, and the transformation of large plasmids. We developed a new competent cell preparation method with unmatched transformation efficiency. When the BW3KD strain, derived from Escherichia coli BW25113 cells, was prepared by this method, its transformation efficiency reached up to (7.21 ± 1.85) × 109 CFU/μg DNA, which broke the record for chemically prepared competent cells. Routine cloning could be completed in 1 day due to the high growth rate of this strain. The competent cells were shown to be highly efficient for transformation or cloning with large plasmids and for the assembly of multiple fragments. The results highlight the effectiveness of the new protocol and the usefulness of the BW3KD strain as the host.
Collapse
|