1
|
Jones LM, Salta M, Lund Skovhus T, Thomas K, Illson T, Wharton J, Webb JS. Toward simulating offshore oilfield conditions: insights into microbiologically influenced corrosion from a dual anaerobic biofilm reactor. Appl Environ Microbiol 2025:e0222124. [PMID: 40035601 DOI: 10.1128/aem.02221-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/11/2025] [Indexed: 03/05/2025] Open
Abstract
Oilfield systems are a multifaceted ecological niche, which consistently experiences microbiologically influenced corrosion. However, simulating the environmental conditions of an offshore system within the laboratory is notoriously difficult. A novel dual anaerobic biofilm reactor protocol allowed a complex mixed-species marine biofilm to be studied. Interestingly, electroactive corrosive bacteria and fermentative electroactive bacteria growth was supported within the biofilm microenvironment. Critically, the biotic condition exhibited pits with a greater average area, which is characteristic of microbiologically influenced corrosion. This research seeks to bridge the gap between experimental and real-world scenarios, ultimately enhancing the reliability of biofilm management strategies in the industry. IMPORTANCE It is becoming more widely understood that any investigation of microbiologically influenced corrosion requires a multidisciplinary focus on multiple lines of evidence. Although there are numerous standards available to guide specific types of testing, there are none that focus on integrating biofilm testing. By developing a novel dual anaerobic reactor model to study biofilms, insights into the different abiotic and biotic corrosion mechanisms under relevant environmental conditions can be gained. Using multiple lines of evidence to gain a holistic understanding, more sustainable prevention and mitigation strategies can be designed. To our knowledge, this is the first time all these metrics have been combined in one unified approach. The overall aim of this paper was to explore recent advances in biofilm testing and corrosion research and provide recommendations for future standards being drafted. However, it is important to note that this article itself is not intending to serve as a standard.
Collapse
Affiliation(s)
- Liam M Jones
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Maria Salta
- MIC and Biofilm Department, Endures, Bevesierweg, Den Helder, Netherlands
| | - Torben Lund Skovhus
- Research Centre for Built Environment, Climate and Water Technology, VIA University College, Horsens, Denmark
| | | | | | - Julian Wharton
- School of Engineering, University of Southampton, Southampton, United Kingdom
| | - Jeremy S Webb
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
- National Biofilms Innovation Centre, Southampton, United Kingdom
| |
Collapse
|
2
|
Ruiz-Ruiz P, Mohedano-Caballero P, De Vrieze J. Ectoine production through a marine methanotroph-microalgae culture allows complete biogas valorization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124223. [PMID: 39935057 DOI: 10.1016/j.jenvman.2025.124223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/17/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
Methanotrophs have recently emerged as a promising platform for producing bio-based chemicals, like ectoine, from biogas, offering an economical alternative to glucose. However, most studies have focused solely on CH4 consumption, often overlooking the CO2, which is both produced by methanotrophs and present in biogas, despite its potential as a carbon source for microorganisms, such as microalgae. In this study, marine methanotrophic-microalgal cultures were enriched from environmental samples collected at the North Sea coast to explore ectoine production from both CH4 and CO2 in biogas. The sediment-derived culture exhibited the highest CH4 removal efficiency and CO2 uptake, and was selected for further experiments. The culture was primarily composed of Methylobacter marinus, Methylophaga marina, and the microalga Picochlorum oklahomensis. Gas consumption, growth, and ectoine production were evaluated under varying salinity levels and osmotic stress. The NaCl concentrations above 6% negatively impacted CH4 oxidation and inhibited ectoine synthesis, while osmotic shocks enhanced ectoine accumulation, with a maximum ectoine content of 51.3 mgectoine gVSS-1 at 4.5% NaCl. This study is the first to report ectoine production from methanotroph-microalgal cultures, showing its potential for biogas valorization into high-value bio-based chemicals, like ectoine, marking a significant step toward sustainable biogas utilization.
Collapse
Affiliation(s)
- Patricia Ruiz-Ruiz
- Center for Microbial Ecology and Technology (CMET), Ghent University, Frieda Saeysstraat 1, B-9052, Gent, Belgium
| | - Patricia Mohedano-Caballero
- Center for Microbial Ecology and Technology (CMET), Ghent University, Frieda Saeysstraat 1, B-9052, Gent, Belgium
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Frieda Saeysstraat 1, B-9052, Gent, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, B-9052, Gent, Belgium.
| |
Collapse
|
3
|
Wang H, Jin H, Wang J, Wang X, Li X, Yan J, Yang Y. Dehalogenimonas Strain W from Estuarine Sediments Dechlorinates 1,2-Dichloroethane under Elevated Salinity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:779-790. [PMID: 39723812 DOI: 10.1021/acs.est.4c08999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Organohalide-respiring bacteria (OHRB) have been found in various environments and play an indispensable role in the biogeochemical cycling and detoxification of halogenated organic compounds (HOCs). Currently, few ORHB have been reported to perform reductive dechlorination under high salinity conditions, indicating a knowledge gap on the diversity of OHRB and the survival strategy of OHRB in saline environments (e.g., estuarine, marine). This study reports the characterization of an enrichment culture dominated by a new Dehalogenimonas population strain W derived from estuarine sediments, which demonstrates the capability to dechlorinate 1,2-dichloroethane (1,2-DCA) to ethene under elevated salinity (≥5.1% NaCl, w/v). Metagenomic and proteomic analyses revealed that the distinctive high-salinity dechlorination of strain W is primarily attributed to a putative reductive dehalogenase (RDase) DdeA, which shares >91.4% amino acid identity with the dihaloeliminating RDase DcpA from other Dehalogenimonas strains. Additionally, ectoine biosynthesis enzymes (EctABC) contribute to the strain's salt tolerance. These findings underscore the potential of OHRB, particularly Dehalogenimonas, to detoxify HOCs in high-salinity environments, such as estuarine and marine ecosystems, by employing compatible solutes as an adaptive mechanism.
Collapse
Affiliation(s)
- Hongyan Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049,China
| | - Huijuan Jin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Jingjing Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Xin Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049,China
| | - Xiuying Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| |
Collapse
|
4
|
Enuh BM, Aytar Çelik P, Angione C. Genome-Scale Metabolic Modeling of Halomonas elongata 153B Explains Polyhydroxyalkanoate and Ectoine Biosynthesis in Hypersaline Environments. Biotechnol J 2024; 19:e202400267. [PMID: 39380500 DOI: 10.1002/biot.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
Halomonas elongata thrives in hypersaline environments producing polyhydroxyalkanoates (PHAs) and osmoprotectants such as ectoine. Despite its biotechnological importance, several aspects of the dynamics of its metabolism remain elusive. Here, we construct and validate a genome-scale metabolic network model for H. elongata 153B. Then, we investigate the flux distribution dynamics during optimal growth, ectoine, and PHA biosynthesis using statistical methods, and a pipeline based on shadow prices. Lastly, we use optimization algorithms to uncover novel engineering targets to increase PHA production. The resulting model (iEB1239) includes 1534 metabolites, 2314 reactions, and 1239 genes. iEB1239 can reproduce growth on several carbon sources and predict growth on previously unreported ones. It also reproduces biochemical phenotypes related to Oad and Ppc gene functions in ectoine biosynthesis. A flux distribution analysis during optimal ectoine and PHA biosynthesis shows decreased energy production through oxidative phosphorylation. Furthermore, our analysis unveils a diverse spectrum of metabolic alterations that extend beyond mere flux changes to encompass heightened precursor production for ectoine and PHA synthesis. Crucially, these findings capture other metabolic changes linked to adaptation in hypersaline environments. Bottlenecks in the glycolysis and fatty acid metabolism pathways are identified, in addition to PhaC, which has been shown to increase PHA production when overexpressed. Overall, our pipeline demonstrates the potential of genome-scale metabolic models in combination with statistical approaches to obtain insights into the metabolism of H. elongata. Our platform can be exploited for researching environmental adaptation, and for designing and optimizing metabolic engineering strategies for bioproduct synthesis.
Collapse
Affiliation(s)
- Blaise Manga Enuh
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
- Biotechnology and Biosafety Department, Graduate and Natural Applied Science, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Pınar Aytar Çelik
- Biotechnology and Biosafety Department, Graduate and Natural Applied Science, Eskişehir Osmangazi University, Eskişehir, Turkey
- Environmental Protection and Control Program, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Claudio Angione
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, UK
- Centre for Digital Innovation, Teesside University, Middlesbrough, UK
- National Horizons Centre, Darlington, UK
| |
Collapse
|
5
|
Yu J, Zhang Y, Liu H, Liu Y, Mohsin A, Liu Z, Zheng Y, Xing J, Han J, Zhuang Y, Guo M, Wang Z. Temporal dynamics of stress response in Halomonas elongata to NaCl shock: physiological, metabolomic, and transcriptomic insights. Microb Cell Fact 2024; 23:88. [PMID: 38519954 PMCID: PMC10960403 DOI: 10.1186/s12934-024-02358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The halophilic bacterium Halomonas elongata is an industrially important strain for ectoine production, with high value and intense research focus. While existing studies primarily delve into the adaptive mechanisms of this bacterium under fixed salt concentrations, there is a notable dearth of attention regarding its response to fluctuating saline environments. Consequently, the stress response of H. elongata to salt shock remains inadequately understood. RESULTS This study investigated the stress response mechanism of H. elongata when exposed to NaCl shock at short- and long-time scales. Results showed that NaCl shock induced two major stresses, namely osmotic stress and oxidative stress. In response to the former, within the cell's tolerable range (1-8% NaCl shock), H. elongata urgently balanced the surging osmotic pressure by uptaking sodium and potassium ions and augmenting intracellular amino acid pools, particularly glutamate and glutamine. However, ectoine content started to increase until 20 min post-shock, rapidly becoming the dominant osmoprotectant, and reaching the maximum productivity (1450 ± 99 mg/L/h). Transcriptomic data also confirmed the delayed response in ectoine biosynthesis, and we speculate that this might be attributed to an intracellular energy crisis caused by NaCl shock. In response to oxidative stress, transcription factor cysB was significantly upregulated, positively regulating the sulfur metabolism and cysteine biosynthesis. Furthermore, the upregulation of the crucial peroxidase gene (HELO_RS18165) and the simultaneous enhancement of peroxidase (POD) and catalase (CAT) activities collectively constitute the antioxidant defense in H. elongata following shock. When exceeding the tolerance threshold of H. elongata (1-13% NaCl shock), the sustained compromised energy status, resulting from the pronounced inhibition of the respiratory chain and ATP synthase, may be a crucial factor leading to the stagnation of both cell growth and ectoine biosynthesis. CONCLUSIONS This study conducted a comprehensive analysis of H. elongata's stress response to NaCl shock at multiple scales. It extends the understanding of stress response of halophilic bacteria to NaCl shock and provides promising theoretical insights to guide future improvements in optimizing industrial ectoine production.
Collapse
Affiliation(s)
- Junxiong Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Yue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Hao Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Yuxuan Liu
- Department of Chemical Engineering for Energy Resources, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Zebo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Yanning Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Jianmin Xing
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China.
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China.
| |
Collapse
|
6
|
Kim M, Kim W, Park Y, Jung J, Park W. Lineage-specific evolution of Aquibium, a close relative of Mesorhizobium, during habitat adaptation. Appl Environ Microbiol 2024; 90:e0209123. [PMID: 38412007 PMCID: PMC10952388 DOI: 10.1128/aem.02091-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
The novel genus Aquibium that lacks nitrogenase was recently reclassified from the Mesorhizobium genus. The genomes of Aquibium species isolated from water were smaller and had higher GC contents than those of Mesorhizobium species. Six Mesorhizobium species lacking nitrogenase were found to exhibit low similarity in the average nucleotide identity values to the other 24 Mesorhizobium species. Therefore, they were classified as the non-N2-fixing Mesorhizobium lineage (N-ML), an evolutionary intermediate species. The results of our phylogenomic analyses and the loss of Rhizobiales-specific fur/mur indicated that Mesorhizobium species may have evolved from Aquibium species through an ecological transition. Halotolerant and alkali-resistant Aquibium and Mesorhizobium microcysteis belonging to N-ML possessed many tripartite ATP-independent periplasmic transporter and sodium/proton antiporter subunits composed of seven genes (mrpABCDEFG). These genes were not present in the N2-fixing Mesorhizobium lineage (ML), suggesting that genes acquired for adaptation to highly saline and alkaline environments were lost during the evolution of ML as the habitat changed to soil. Land-to-water habitat changes in Aquibium species, close relatives of Mesorhizobium species, could have influenced their genomic evolution by the gain and loss of genes. Our study indicated that lineage-specific evolution could have played a significant role in shaping their genome architecture and conferring their ability to thrive in different habitats.IMPORTANCEPhylogenetic analyses revealed that the Aquibium lineage (AL) and non-N2-fixing Mesorhizobium lineage (N-ML) were monophyletically grouped into distinct clusters separate from the N2-fixing Mesorhizobium lineage (ML). The N-ML, an evolutionary intermediate species having characteristics of both ancestral and descendant species, could provide a genomic snapshot of the genetic changes that occur during adaptation. Genomic analyses of AL, N-ML, and ML revealed that changes in the levels of genes related to transporters, chemotaxis, and nitrogen fixation likely reflect adaptations to different environmental conditions. Our study sheds light on the complex and dynamic nature of the evolution of rhizobia in response to changes in their environment and highlights the crucial role of genomic analysis in understanding these processes.
Collapse
Affiliation(s)
- Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Jaejoon Jung
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
7
|
Nisson DM, Kieft TL, Castillo J, Perl SM, Onstott TC. Radiolytic support for oxidative metabolism in an ancient subsurface brine system. ISME COMMUNICATIONS 2024; 4:ycae138. [PMID: 39660010 PMCID: PMC11630799 DOI: 10.1093/ismeco/ycae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Long-isolated subsurface brine environments (Ma-Ga residence times) may be habitable if they sustainably provide substrates, e.g. through water-rock reactions, that support microbial catabolic energy yields exceeding maintenance costs. The relative inaccessibility and low biomass of such systems has led to limited understanding of microbial taxonomic distribution, metabolism, and survival under abiotic stress exposure in these extreme environments. In this study, taxonomic and metabolic annotations of 95 single-cell amplified genomes were obtained for one low biomass (103-104 cells/ml), hypersaline (246 g/L), and radiolytically enriched brine obtained from 3.1 km depth in South Africa's Moab Khotsong mine. The majority of single-cell amplified genomes belonged to three halophilic families (Halomondaceae (58%), Microbacteriaceae (24%), and Idiomarinaceae (8%)) and did not overlap with any family-level identifications from service water or a less saline dolomite aquifer sampled in the same mine. Functional annotation revealed complete metabolic modules for aerobic heterotrophy (organic acids and xenobiotic oxidation), fermentation, denitrification, and thiosulfate oxidation, suggesting metabolic support in a microoxic environment. Single-cell amplified genomes also contained complete modules for degradation of complex organics, amino acid and nucleotide synthesis, and motility. This work highlights a long-isolated subsurface fluid system with microbial metabolism fueled by radiolytically generated substrates, including O2, and suggests subsurface brines with high radionuclide concentrations as putatively habitable and redox-sustainable environments over long (ka-Ga) timescales.
Collapse
Affiliation(s)
- Devan M Nisson
- Department of Geosciences, Princeton University, Princeton, NJ 08540, United States
| | - Thomas L Kieft
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801, United States
| | - Julio Castillo
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9300, South Africa
| | - Scott M Perl
- Department of Earth, Planetary, and Space Sciences, University of California Los Angeles, Los Angeles, CA 90095, United States
- Mineral Sciences, Los Angeles Natural History Museum, Los Angeles, CA 90007, United States
- Blue Marble Space Institute of Science, Seattle, WA 98104, United States
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ 08540, United States
| |
Collapse
|
8
|
Tichy J, Waldherr M, Ortbauer M, Graf A, Sipek B, Jembrih-Simbuerger D, Sterflinger K, Piñar G. Pretty in pink? Complementary strategies for analysing pink biofilms on historical buildings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166737. [PMID: 37659529 DOI: 10.1016/j.scitotenv.2023.166737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Salt-weathering is a deterioration mechanism affecting building materials that results from repetitive cycles of salt crystallisation-dissolution in the porous mineral network under changing environmental conditions, causing damage to surfaces. However, an additional biodeterioration phenomenon frequently associated with salt efflorescence is the appearance of coloured biofilms, comprising halotolerant/halophilic microorganisms, containing carotenoid pigments that cause pinkish patinas. In this work, two Austrian historical salt-weathered buildings showing pink biofilms, the St. Virgil's Chapel and the Charterhouse Mauerbach, were investigated. Substrate chemistry (salt concentration/composition) was analysed by ion chromatography and X-ray diffraction to correlate these parameters with the associated microorganisms. Microbiomes were analysed by sequencing full-length 16S rRNA amplicons using Nanopore technology. Data demonstrates that microbiomes are not only influenced by salt concentration, but also by its chemical composition. The chapel showed a high overall halite (NaCl) concentration, but the factor influencing the microbiome was the presence/absence of K+. The K+ areas showed a dominance of Aliifodinibius and Salinisphaera species, capable of tolerating high salt concentrations through the "salt-in" strategy by transporting K+ into cells. Conversely, areas without K+ showed a community shift towards Halomonas species, which favour the synthesis of compatible solutes for salt tolerance. In the charterhouse, the main salts were sulphates. In areas with low concentrations, Rubrobacter species dominated, while in areas with high concentrations, Haloechinothrix species did. Among archaea, Haloccoccus species were dominant in all samples, except at high sulphate concentrations, where Halalkalicoccus prevailed. Finally, the biological pigments visible in both buildings were analysed by Raman spectroscopy, showing the same spectra in all areas investigated, regardless of the building and the microbiomes, demonstrating the presence of carotenoids in the pink biofilms. Comprehensive information on the factors affecting the microbiome associated with salt-weathered buildings should provide the basis for selecting the most appropriate desalination treatment to remove both salt efflorescence and associated biofilms.
Collapse
Affiliation(s)
- Johannes Tichy
- Institute for Natural Sciences and Technology in the Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria.
| | - Monika Waldherr
- Department of Applied Life Sciences/Bioengineering/Bioinformatics, FH Campus Wien, Favoritenstrasse 226, A-1100 Vienna, Austria
| | - Martin Ortbauer
- Institute for Conservation - Restoration, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | - Alexandra Graf
- Department of Applied Life Sciences/Bioengineering/Bioinformatics, FH Campus Wien, Favoritenstrasse 226, A-1100 Vienna, Austria
| | - Beate Sipek
- Institute for Conservation - Restoration, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | - Dubravka Jembrih-Simbuerger
- Institute for Natural Sciences and Technology in the Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | - Katja Sterflinger
- Institute for Natural Sciences and Technology in the Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | - Guadalupe Piñar
- Institute for Natural Sciences and Technology in the Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| |
Collapse
|
9
|
Wang Z, Li Y, Gao X, Xing J, Wang R, Zhu D, Shen G. Comparative genomic analysis of Halomonas campaniensis wild-type and ultraviolet radiation-mutated strains reveal genomic differences associated with increased ectoine production. Int Microbiol 2023; 26:1009-1020. [PMID: 37067733 PMCID: PMC10622362 DOI: 10.1007/s10123-023-00356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Abstract
Ectoine is a natural amino acid derivative and one of the most widely used compatible solutes produced by Halomonas species that affects both cellular growth and osmotic equilibrium. The positive effects of UV mutagenesis on both biomass and ectoine content production in ectoine-producing strains have yet to be reported. In this study, the wild-type H. campaniensis strain XH26 (CCTCCM2019776) was subjected to UV mutagenesis to increase ectoine production. Eight rounds of mutagenesis were used to generate mutated XH26 strains with different UV-irradiation exposure times. Ectoine extract concentrations were then evaluated among all strains using high-performance liquid chromatography analysis, alongside whole genome sequencing with the PacBio RS II platform and comparison of the wild-type strain XH26 and the mutant strain G8-52 genomes. The mutant strain G8-52 (CCTCCM2019777) exhibited the highest cell growth rate and ectoine yields among mutated strains in comparison with strain XH26. Further, ectoine levels in the aforementioned strain significantly increased to 1.51 ± 0.01 g L-1 (0.65 g g-1 of cell dry weight), representing a twofold increase compared to wild-type cells (0.51 ± 0.01 g L-1) when grown in culture medium for ectoine accumulation. Concomitantly, electron microscopy revealed that mutated strain G8-52 cells were obviously shorter than wild-type strain XH26 cells. Moreover, strain G8-52 produced a relatively stable ectoine yield (1.50 g L-1) after 40 days of continuous subculture. Comparative genomics analysis suggested that strain XH26 harbored 24 mutations, including 10 nucleotide insertions, 10 nucleotide deletions, and unique single nucleotide polymorphisms. Notably, the genes orf00723 and orf02403 (lipA) of the wild-type strain mutated to davT and gabD in strain G8-52 that encoded for 4-aminobutyrate-2-oxoglutarate transaminase and NAD-dependent succinate-semialdehyde dehydrogenase, respectively. Consequently, these genes may be involved in increased ectoine yields. These results suggest that continuous multiple rounds of UV mutation represent a successful strategy for increasing ectoine production, and that the mutant strain G8-52 is suitable for large-scale fermentation applications.
Collapse
Affiliation(s)
- Zhibo Wang
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China
| | - Yongzhen Li
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China
| | - Xiang Gao
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China
| | - Jiangwa Xing
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China
| | - Rong Wang
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China
| | - Derui Zhu
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China
| | - Guoping Shen
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China.
| |
Collapse
|
10
|
Xing Q, Mesbah NM, Wang H, Zhang Y, Li J, Zhao B. Tandem mass tag-based quantitative proteomics reveals osmotic adaptation mechanisms in Alkalicoccus halolimnae BZ-SZ-XJ29 T , a halophilic bacterium with a broad salinity range for optimal growth. Environ Microbiol 2023; 25:1967-1987. [PMID: 37271582 DOI: 10.1111/1462-2920.16428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/10/2023] [Indexed: 06/06/2023]
Abstract
The moderate halophilic bacterium Alkalicoccus halolimnae BZ-SZ-XJ29T exhibits optimum growth over a wide range of NaCl concentrations (8.3-12.3%, w/v; 1.42-2.1 mol L-1 ). However, its adaptive mechanisms to cope with high salt-induced osmotic stress remain unclear. Using TMT-based quantitative proteomics, the cellular proteome was assessed under low (4% NaCl, 0.68 mol L-1 NaCl, control (CK) group), moderate (8% NaCl, 1.37 mol L-1 NaCl), high (12% NaCl, 2.05 mol L-1 NaCl), and extremely high (16% NaCl, 2.74 mol L-1 NaCl) salinity conditions. Digital droplet PCR confirmed the transcription of candidate genes related to salinity. A. halolimnae utilized distinct adaptation strategies to cope with different salinity conditions. Mechanisms such as accumulating different amounts and types of compatible solutes (i.e., ectoine, glycine betaine, glutamate, and glutamine) and the uptake of glycine betaine and glutamate were employed to cope with osmotic stress. Ectoine synthesis and accumulation were critical to the salt adaptation of A. halolimnae. The expression of EctA, EctB, and EctC, as well as the intracellular accumulation of ectoine, significantly and consistently increased with increasing salinity. Glycine betaine and glutamate concentrations remained constant under the four NaCl concentrations. The total content of glutamine and glutamate maintained a dynamic balance and, when exposed to different salinities, may play a role in low salinity-induced osmoadaptation. Moreover, cellular metabolism was severely affected at high salt concentrations, but the synthesis of amino acids, carbohydrate metabolism, and membrane transport related to haloadptation was preserved to maintain cytoplasmic concentration at high salinity. These findings provide insights into the osmoadaptation mechanisms of moderate halophiles and can serve as a theoretical underpinning for industrial production and application of compatible solutes.
Collapse
Affiliation(s)
- Qinghua Xing
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Noha M Mesbah
- Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Haisheng Wang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingjie Zhang
- China Patent Technology Development Co, Beijing, China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baisuo Zhao
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Huang Y, Abdugheni R, Ma J, Wang R, Gao L, Liu Y, Li W, Cai M, Li L. Halomonas flagellata sp. nov., a halophilic bacterium isolated from saline soil in Xinjiang. Arch Microbiol 2023; 205:340. [PMID: 37750964 DOI: 10.1007/s00203-023-03670-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023]
Abstract
A Gram-stain-negative, strictly aerobic, motile, slightly curved rod-shaped bacterium with multiple flagella, designated strain EGI 63088T, was isolated from a bulk soil of Kalidium foliatum, collected from Wujiaqu in Xinjiang Uighur Autonomous Region, PR China. The optimal growth temperature, salinity, and pH for strain EGI 63088T growth were 30 °C, 3% (w/v) NaCl and 8, respectively. Phylogenetic analysis using 16S rRNA gene sequences indicated that strain EGI 63088T showed the highest sequence similarities to Halomonas heilongjiangensis 9-2T (97.94%), H. lysinitropha 3(2)T (97.51%), and H. daqiaonensis CGMCC 1.9150T (97.08%). The average nucleotide identity and digital DNA-DNA hybridization values between the strain EGI 63088T and H. heilongjiangensis 9-2T were 89.03 and 41.10%, respectively. The DNA G + C content of the genome for strain EGI 63088T was 66.3 mol%. The most prevalent antibiotic resistance and virulence-related genes in Halomonas genomes were Streptomyces cinnamoneu EF-Tu mutant, pilT, and cheY, respectively. The predominant fatty acids of strain EGI 63088T were summed feature 8 (C18: 1 ω6c and/or C18: 1 ω7c), summed feature 3 (C16: 1 ω6c and/or C16: 1 ω7c), and C16: 0; its major respiratory quinone was ubiquinone-9 (Q-9), and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. According to the above results, strain EGI 63088T is considered a novel species of the genus Halomonas, for which the name Halomonas flagellata sp. nov. is proposed. The type strain is EGI 63088T (= KCTC 92047T = CGMCC 1.19133T).
Collapse
Affiliation(s)
- Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Jinbiao Ma
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Rui Wang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, People's Republic of China
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yonghong Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Wenjun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Man Cai
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
12
|
Hobmeier K, Oppermann M, Stasinski N, Kremling A, Pflüger-Grau K, Kunte HJ, Marin-Sanguino A. Metabolic engineering of Halomonas elongata: Ectoine secretion is increased by demand and supply driven approaches. Front Microbiol 2022; 13:968983. [PMID: 36090101 PMCID: PMC9453808 DOI: 10.3389/fmicb.2022.968983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
The application of naturally-derived biomolecules in everyday products, replacing conventional synthetic manufacturing, is an ever-increasing market. An example of this is the compatible solute ectoine, which is contained in a plethora of treatment formulations for medicinal products and cosmetics. As of today, ectoine is produced in a scale of tons each year by the natural producer Halomonas elongata. In this work, we explore two complementary approaches to obtain genetically improved producer strains for ectoine production. We explore the effect of increased precursor supply (oxaloacetate) on ectoine production, as well as an implementation of increased ectoine demand through the overexpression of a transporter. Both approaches were implemented on an already genetically modified ectoine-excreting strain H. elongata KB2.13 (ΔteaABC ΔdoeA) and both led to new strains with higher ectoine excretion. The supply driven approach led to a 45% increase in ectoine titers in two different strains. This increase was attributed to the removal of phosphoenolpyruvate carboxykinase (PEPCK), which allowed the conversion of 17.9% of the glucose substrate to ectoine. For the demand driven approach, we investigated the potential of the TeaBC transmembrane proteins from the ectoine-specific Tripartite ATP-Independent Periplasmic (TRAP) transporter as export channels to improve ectoine excretion. In the absence of the substrate-binding protein TeaA, an overexpression of both subunits TeaBC facilitated a three-fold increased excretion rate of ectoine. Individually, the large subunit TeaC showed an approximately five times higher extracellular ectoine concentration per dry weight compared to TeaBC shortly after its expression was induced. However, the detrimental effect on growth and ectoine titer at the end of the process hints toward a negative impact of TeaC overexpression on membrane integrity and possibly leads to cell lysis. By using either strategy, the ectoine synthesis and excretion in H. elongata could be boosted drastically. The inherent complementary nature of these approaches point at a coordinated implementation of both as a promising strategy for future projects in Metabolic Engineering. Moreover, a wide variation of intracelllular ectoine levels was observed between the strains, which points at a major disruption of mechanisms responsible for ectoine regulation in strain KB2.13.
Collapse
Affiliation(s)
- Karina Hobmeier
- Professorship for Systems Biotechnology, Technical University of Munich, Garching, Germany
| | - Martin Oppermann
- Professorship for Systems Biotechnology, Technical University of Munich, Garching, Germany
| | - Natalie Stasinski
- Professorship for Systems Biotechnology, Technical University of Munich, Garching, Germany
| | - Andreas Kremling
- Professorship for Systems Biotechnology, Technical University of Munich, Garching, Germany
| | - Katharina Pflüger-Grau
- Professorship for Systems Biotechnology, Technical University of Munich, Garching, Germany
| | - Hans Jörg Kunte
- Division Biodeterioration and Reference Organisms, Bundesanstalt für Materialforschung und-prüfung (BAM), Berlin, Germany
| | - Alberto Marin-Sanguino
- Professorship for Systems Biotechnology, Technical University of Munich, Garching, Germany
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| |
Collapse
|