1
|
Yang J, Xu Z, Wang X, Zhang X, Zhu Y, Guo J. Parents greater influenced the fecal microbiome and resistome of ibis nestlings than artifical breeding environment contamination. ENVIRONMENTAL RESEARCH 2025; 271:121057. [PMID: 39920966 DOI: 10.1016/j.envres.2025.121057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/23/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
The trajectory and dynamics of gut resistome development in the early life of the endangered birds, as well as how they are acquired, remain largely unclear. Here, we present a longitudinal study of the fecal microbiome and resistome of crested ibis (Nipponia nippon) chicks in the first three months of life. In addition, the microbiome and resistome in their parental and living environmental samples were also determined for further exploring the possible factors that could affect their gut resistome. The gut microbiome of ibis chicks contained diverse antibiotic resistance genes (ARGs), dominated by β-lactam, tetracycline, aminoglycoside and macrolide. Novel to this study were the significant, the ARG abundances of ibis chicks were significantly higher than their parents, which would decrease with age. In addition, significant negative correlation between the ARG abundance and microbiome diversity, speculating that the ARG abundances were possibly associated with the gut microbial maturity. Finally, the sourcetracker analysis showed that the microbiota of the ibis parent gut and food were the main sources of ibis chicks microbiota. Collectively, our study showed a trajectory of the resistome and microbiome and the possible influencing factors in the early stage of life in ibises, which would advance our understanding of ARG dynamics in young crested ibis and provide valuable insights into the direction of conservation efforts.
Collapse
Affiliation(s)
- Jing Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Zekun Xu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xueyan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xuan Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yimeng Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| |
Collapse
|
2
|
Fablet L, Bonin A, Zarzoso‐Lacoste D, Dubut V, Walch L. Exploring Bird Gut Microbiota Through Opportunistic Fecal Sampling: Ecological and Evolutionary Perspectives. Ecol Evol 2025; 15:e71291. [PMID: 40230867 PMCID: PMC11995298 DOI: 10.1002/ece3.71291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025] Open
Abstract
Wetland ecosystems are facing alarming rates of destruction and degradation, posing significant challenges for avian populations reliant on these habitats. Bird health is closely linked to the composition of their intestinal microbiota, which is primarily influenced by local conditions, primarily through diet. Building on our previous work identifying dietary variations among bird populations in marshes within a Ramsar site along the Somme and Avre rivers (France), this pilot study aimed to assess the relevance of using fecal samples collected from the ground to characterize avian intestinal microbiota via 16S rRNA metabarcoding. We hypothesized that this noninvasive sampling method would capture how bird traits and environmental factors shape fecal microbiota composition. Sampling was conducted during the breeding season at seven locations (six within the Ramsar site and one on its outskirts) spanning rural or peri-urban environments. A total of 52 fecal samples from nine bird species or families, predominantly waterbirds, were analyzed for bacterial composition. At the phylum level, Firmicutes and Proteobacteria were predominant, with the relative abundance of genera such as Clostridium, Rothia, Bacillus, Caldilinea and Pseudomonas varying among bird species. The potential enteropathogen Campylobacter was primarily detected in samples from peri-urban sites. Multivariate analyses revealed significant variations in bacterial composition associated with bird trophic guild, ecology, body length, pond surface and habitat location. Additionally, a weak correlation was observed between host phylogeny and microbiota composition. Although the limited sample size, particularly for some species, constrains the robustness of these findings, the observed trends align with ecological expectations. This study highlights the potential of opportunistically collected fecal samples as a low-impact tool for exploring the relationship between bird gut microbiota and their habitat.
Collapse
Affiliation(s)
- Laura Fablet
- Sorbonne Université, CNRS, IRD, INRAEUniversité Paris Est Créteil, Université Paris Cité, Institute of Ecology and Environmental Sciences (IEES‐Paris)ParisFrance
| | | | - Diane Zarzoso‐Lacoste
- UMR CNRS 7058 Ecologie et Dynamique Des Systèmes Anthropisés (EDYSAN)Université de Picardie Jules VerneAmiensFrance
| | - Vincent Dubut
- Aix Marseille UnivAvignon Université, CNRS, IRD, IMBEMarseilleFrance
- ADENEKOSaint‐GironsFrance
| | - Laurence Walch
- Sorbonne Université, CNRS, IRD, INRAEUniversité Paris Est Créteil, Université Paris Cité, Institute of Ecology and Environmental Sciences (IEES‐Paris)ParisFrance
| |
Collapse
|
3
|
Yan S, Zhang Y, Huang J, Liu Y, Li S. Comparative Study of Gut Microbiome in Urban and Rural Eurasian Tree Sparrows. Animals (Basel) 2024; 14:3497. [PMID: 39682463 DOI: 10.3390/ani14233497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Gut microbiota play a significant role in various physiological functions, including digestion, nutritional metabolism, and host immune function. The composition of these gut microbes is largely influenced by habitats. This study examines the gut microbiota of the Eurasian tree sparrow (Passer montanus) inhabiting rural and urban environments to understand the effects of habitat variation on microbial composition. We captured 36 rural and 29 urban adult tree sparrows and observed minor differences in body mass but substantial differences in foraging microhabitats between the two groups. Fecal samples from adult males with similar body mass were selected for a gut microbiome analysis to mitigate potential confounding effects, resulting in 20 successfully sequenced samples. The analysis disclosed disparities in gut microbiota diversity and composition between rural and urban sparrows. The urban group demonstrated slightly higher alpha diversity and distinct dominant phyla and genera compared to the rural group. Additionally, differences in the relative abundance of potentially pathogenic bacteria were observed between the groups. Several potentially pathogenic bacteria (e.g., TM7, Staphylococcus, Helicobacter, and Shigella) were more abundant in the urban group, suggesting that tree sparrows may act as transmission vectors and develop stronger immune systems. This could potentially facilitate pathogen dissemination while also contributing to the natural cycling of nutrients and maintaining ecosystem health in urban environments. The beta diversity analysis confirmed structural differences in microbial communities, implicating habitat variation as a contributing factor. Furthermore, the LEfSe analysis emphasized significant differences in gut bacteria abundance (across two phyla, three classes, six orders, seven families, and eight genera) between urban and rural sparrows, with predicted functional differences in metabolic pathways. Notably, lipid metabolism was enriched in urban sparrows, indicating enhanced lipid synthesis and metabolism in urban habitats. In conclusion, this study underscores the profound influence of habitat on the gut microbiota composition and functional potential in tree sparrows. Our findings highlight that urbanization alters the gut microbes and, consequently, the physiological functions of bird species.
Collapse
Affiliation(s)
- Shuai Yan
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Yu Zhang
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Ji Huang
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Yingbao Liu
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Shaobin Li
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| |
Collapse
|
4
|
Sun M, Halimubieke N, Fang B, Valdebenito JO, Xu X, Sheppard SK, Székely T, Zhang T, He S, Lu R, Ward S, Urrutia AO, Liu Y. Gut microbiome in two high-altitude bird populations showed heterogeneity in sex and life stage. FEMS MICROBES 2024; 5:xtae020. [PMID: 39385800 PMCID: PMC11462087 DOI: 10.1093/femsmc/xtae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 10/12/2024] Open
Abstract
Gut microbiotas have important impacts on host health, reproductive success, and survival. While extensive research in mammals has identified the exogenous (e.g. environment) and endogenous (e.g. phylogeny, sex, and age) factors that shape the gut microbiota composition and functionality, yet avian systems remain comparatively less understood. Shorebirds, characterized by a well-resolved phylogeny and diverse life-history traits, present an ideal model for dissecting the factors modulating gut microbiota dynamics. Here, we provide an insight into the composition of gut microbiota in two high-altitude (ca. 3200 m above sea level) breeding populations of Kentish plover (Charadrius alexandrinus) and Tibetan sand plover (Charadrius altrifrons) in the Qinghai-Tibetan Plateau, China. By analysing faecal bacterial communities using 16S rRNA sequencing technology, we find a convergence in gut microbial communities between the two species, dominated by Firmicutes, Proteobacteria, and Bacteroidetes. This suggests that the shared breeding environment potentially acts as a significant determinant shaping their gut microbiota. We also show sex- and age-specific patterns of gut microbiota: female adults maintain a higher diversity than males, and juveniles are enriched in Rhizobiaceae and Exiguobacterium due to their vegetative food resource. Our study not only provides a comprehensive descriptive information for future investigations on the diversity, functionality, and determinants of avian microbiomes, but also underscores the importance of microbial communities in broader ecological contexts.
Collapse
Affiliation(s)
- Mingwan Sun
- State Key Laboratory of Biocontrol, School of Life Sciences/School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
- Milner Centre for Evolution, Department of Life Science, University of Bath, Bath BA27AY, United Kingdom
| | - Naerhulan Halimubieke
- Milner Centre for Evolution, Department of Life Science, University of Bath, Bath BA27AY, United Kingdom
- Department of Anthropology, University College London, London WC1H 0BW, United Kingdom
| | - Baozhu Fang
- State Key Laboratory of Biocontrol, School of Life Sciences/School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - José O Valdebenito
- Milner Centre for Evolution, Department of Life Science, University of Bath, Bath BA27AY, United Kingdom
- Bird Ecology Lab, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Independencia 631, Valdivia 5110566, Chile
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Santiago 8331150, Chile
| | - Xieyang Xu
- State Key Laboratory of Biocontrol, School of Life Sciences/School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Samuel K Sheppard
- Ineos Oxford Institute, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Tamás Székely
- Milner Centre for Evolution, Department of Life Science, University of Bath, Bath BA27AY, United Kingdom
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen 4032, Hungary
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Shunfu He
- Xining National Terrestrial Wildlife Epidemic Monitoring Station, Xining 810008, China
| | - Rong Lu
- Xining National Terrestrial Wildlife Epidemic Monitoring Station, Xining 810008, China
| | - Stephen Ward
- Department of Life Science, University of Bath, Bath BA27AY, United Kingdom
| | - Araxi O Urrutia
- State Key Laboratory of Biocontrol, School of Life Sciences/School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Life Sciences/School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Zhang S, Zhou C, Dong Z, Feng K, Peng K, Wang Z, Jiang Y, Jin L, Zhang P, Wu Y. The diet-intestinal microbiota dynamics and adaptation in an elevational migration bird, the Himalayan bluetail ( Tarsiger rufilatus). Ecol Evol 2024; 14:e11617. [PMID: 38952660 PMCID: PMC11214064 DOI: 10.1002/ece3.11617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
Migratory birds experience changes in their environment and diet during seasonal migrations, thus requiring interactions between diet and gut microbes. Understanding the co-evolution of the host and gut microbiota is critical for elucidating the rapid adaptations of avian gut microbiota. However, dynamics of gut microbial adaptations concerning elevational migratory behavior, which is prevalent but understudied in montane birds remain poorly understood. We focused on the Himalayan bluetail (Tarsiger rufilatus) in the montane forests of Mt. Gongga to understand the diet-gut microbial adaptations of elevational migratory birds. Our findings indicate that elevational migratory movements can rapidly alter gut microbial composition and function within a month. There was a significant interaction between an animal-based diet and gut microbiota across migration stages, underscoring the importance of diet in shaping microbial communities. Furthermore, the gut microbial composition of T. rufilatus may be potentially altered by high-altitude acclimatization. An increase in fatty acid and amino acid metabolism was observed in response to low temperatures and limited resources, resulting in enhanced energy extraction and nutrient utilization. Moreover, microbial communities in distinct gut segments varied in relative abundance and responses to environmental changes. While the bird jejunum exhibited greater susceptibility to food and environmental fluctuations, there was no significant difference in metabolic capacity among gut segments. This study provides initial evidence of rapid diet-gut microbial changes in distinct gut segments of elevational migratory birds and highlights the importance of seasonal sample collection. Our findings provide a deeper understanding of the unique high-altitude adaptation patterns of the gut microbiota for montane elevational migratory birds.
Collapse
Affiliation(s)
- Shangmingyu Zhang
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Chuang Zhou
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Zhehan Dong
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Kaize Feng
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Kexin Peng
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Zhengyang Wang
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| | - Yong Jiang
- Administration of Gongga Mountain National Nature ReserveKangdingGanzi Tibetan Autonomous PrefectureChina
| | - Linyu Jin
- Chengdu Tianfu International Airport Branch of Sichuan Airport Group Limited CompanyChengduChina
| | - Ping Zhang
- Chengdu Tianfu International Airport Branch of Sichuan Airport Group Limited CompanyChengduChina
| | - Yongjie Wu
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
6
|
Shi W, Maqsood I, Liu K, Yu M, Si Y, Rong K. Community Diversity of Fungi Carried by Four Common Woodpeckers in Heilongjiang Province, China. J Fungi (Basel) 2024; 10:389. [PMID: 38921375 PMCID: PMC11204829 DOI: 10.3390/jof10060389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Woodpeckers exhibit selectivity when choosing tree cavities for nest development in forest ecosystems, and fungi play a significant and important role in this ecological process. Therefore, there is a complex and intricate relationship between the various behaviors of woodpeckers and the occurrence of fungal species. Research into the complex bond between fungi and woodpeckers was undertaken to provide more information about this remarkable ecological relationship. Through the process of line transect sampling, woodpecker traces were searched for, and mist nets were set up to capture them. A total of 21 woodpeckers belonging to four species were captured. High-throughput sequencing of the ITS region was performed on fungal-conserved samples to enable an in-depth analysis of the fungal communities linked to the woodpeckers' nests. Members of Ascomycota were the most abundant in the samples, accounting for 91.96% of the total, demonstrating the importance of this group in the forest ecosystem of this station. The statistical results indicate significant differences in the fungal diversity carried by woodpeckers among the different groups. Species of Cladosporium were found to be the most prevalent of all the detected fungal genera, accounting for 49.3%. The top 15 most abundant genera were Cladosporium, Trichoderma, Beauveria, Epicococcum, Hypoxylon, Penicillium, Nigrospora, Aspergillus, Oidiodendron, Cercospora, Talaromyces, Phialemo-nium, Petriella, Cordyceps, and Sistotrema. The standard Bray-Curtis statistical technique was used in a hierarchical clustering analysis to compute inter-sample distances, allowing for the identification of patterns and correlations within the dataset. We discovered that in the grouped samples from woodpeckers, there were differences in the diversity of fungal communities carried by four woodpecker species, but the less dominant fungal species were still similar. The findings highlight the need to consider these diverse ecological linkages in woodpecker research and conservation efforts.
Collapse
Affiliation(s)
- Wenhui Shi
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Iram Maqsood
- Department of Zoology, Shaheed Benazir Bhutto Women University Peshawar Pakistan, Peshawar 25000, Pakistan
| | - Keying Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Meichen Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yuhui Si
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Ke Rong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Wildlife Conservation Biology, National Forestry and Grassland Administration, Beijing 100013, China
| |
Collapse
|
7
|
Sun Y, Hao Y, Zhang Q, Liu X, Wang L, Li J, Li M, Li D. Coping with extremes: Alternations in diet, gut microbiota, and hepatic metabolic functions in a highland passerine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167079. [PMID: 37714349 DOI: 10.1016/j.scitotenv.2023.167079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
In wild animals, diet and gut microbiota interactions are critical moderators of metabolic functions and are highly contingent on habitat conditions. Challenged by the extreme conditions of high-altitude environments, the strategies implemented by highland animals to adjust their diet and gut microbial composition and modulate their metabolic substrates remain largely unexplored. By employing a typical human commensal species, the Eurasian tree sparrow (Passer montanus, ETS), as a model species, we studied the differences in diet, digestive tract morphology and enzyme activity, gut microbiota, and metabolic energy profiling between highland (the Qinghai-Tibet Plateau, QTP; 3230 m) and lowland (Shijiazhuang, Hebei; 80 m) populations. Our results showed that highland ETSs had enlarged digestive organs and longer small intestinal villi, while no differences in key digestive enzyme activities were observed between the two populations. The 18S rRNA sequencing results revealed that the dietary composition of highland ETSs were more animal-based and less plant-based than those of the lowland ones. Furthermore, 16S rRNA sequencing results suggested that the intestinal microbial communities were structurally segregated between populations. PICRUSt metagenome predictions further indicated that the expression patterns of microbial genes involved in material and energy metabolism, immune system and infection, and xenobiotic biodegradation were strikingly different between the two populations. Analysis of liver metabolomics revealed significant metabolic differences between highland and lowland ETSs in terms of substrate utilization, as well as distinct sex-specific alterations in glycerophospholipids. Furthermore, the interplay between diet, liver metabolism, and gut microbiota suggests a dietary shift resulting in corresponding changes in gut microbiota and metabolic functions. Our findings indicate that highland ETSs have evolved to optimize digestion and absorption, rely on more protein-rich foods, and possess gut microbiota tailored to their dietary composition, likely adaptive physiological and ecological strategies adopted to cope with extreme highland environments.
Collapse
Affiliation(s)
- Yanfeng Sun
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Yaotong Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Qian Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xu Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Juyong Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Mo Li
- College of Life Sciences, Cangzhou Normal University, Cangzhou 061001, China.
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
8
|
Zhang S, Shen Y, Wang S, Lin Z, Su R, Jin F, Zhang Y. Responses of the gut microbiota to environmental heavy metal pollution in tree sparrow (Passer montanus) nestlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115480. [PMID: 37716068 DOI: 10.1016/j.ecoenv.2023.115480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Gut microbiota plays a critical role in regulating the health and adaptation of wildlife. However, our understanding of how exposure to environmental heavy metals influences the gut microbiota of wild birds, particularly during the vulnerable and sensitive nestling stage, remains limited. In order to investigate the relationship between heavy metals and the gut microbiota, we analyzed the characteristics of gut microbiota and heavy metals levels in tree sparrow nestlings at different ages (6, 9 and 12-day-old). The study was conducted in two distinct areas: Baiyin (BY), which is heavily contaminated with heavy metals, and Liujiaxia (LJX), a relatively unpolluted area. Our result reveled a decrease in gut microbiota diversity and increased inter-individual variation among nestlings in BY. However, we also observed an increase in the abundance of bacterial groups and an up-regulation of bacterial metabolic functions associated with resistance to heavy metals toxicity in BY. Furthermore, we identified a metal-associated shift in the relative abundance of microbial taxa in 12-day-old tree sparrow nestlings in BY, particularly involving Aeromonadaceae, Ruminococcaceae and Pseudomonadaceae. Moreover, a significant positive correlation was found between the body condition of tree sparrow nestlings and the abundance of Bifidobacteriaceae in BY. Collectively, our findings indicate that the gut microbiota of tree sparrow nestlings is susceptible to heavy metals during early development. However, the results also highlight the presence of adaptive responses that enable them to effectively cope with environmental heavy metal pollution.
Collapse
Affiliation(s)
- Sheng Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Shen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shengnan Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhaocun Lin
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Su
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fei Jin
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
9
|
Guan Y, Bao L, Zhou L, Dai C, Li Z, Zhang S, Shang Y, Niu W, Zhang Y, Wang H. Comparative analysis of the fecal microbiota of healthy and injured common kestrel ( Falco tinnunculus) from the Beijing Raptor Rescue Center. PeerJ 2023; 11:e15789. [PMID: 37637157 PMCID: PMC10452619 DOI: 10.7717/peerj.15789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2023] [Indexed: 08/29/2023] Open
Abstract
The gut microbiota is a complex ecosystem that interacts with many other factors to affect the health and disease states of the host. The common kestrel (Falco tinnunculus) is protected at the national level in China. However, the available sequencing data of the gut microbiota from the feces of wild common kestrels, especially for being rescued individuals by professional organization, remains limited. In the present study, we characterized the fecal bacterial communities of healthy and injured common kestrels, and compared the structure of their fecal microbiota by analyzing the V3-V4 region of the 16S rRNA gene using high-throughput sequencing technology with the Illumina MiSeq platform. We found that Firmicutes, Proteobacteria and Actinobacteria were the most predominant phyla in common kestrels. Further, the beta diversity analysis showed that changes in gut microbes were associated with injuries to the common kestrel. The Bacteroides/Firmicutes ratio was significantly lower in the injured group. At the genus level, Glutamicibacter showed significant difference in the two groups. The aim of our current study was to characterize the basic bacterial composition and community structure in the feces of healthy common kestrels, and then compare the differences in the fecal microbiota between healthy and injured individuals. Patescibacteria, Spirochaetes, and Glutamicibacter may be studied as potential biomarkers for certain diseases in raptors. The results could provide the basic data for additional research on the fecal microbiota of common kestrels and contribute to the rescue of wild raptors in the future.
Collapse
Affiliation(s)
- Yu Guan
- Beijing Normal University, Beijing, China
| | - Lei Bao
- Beijing Normal University, Beijing, China
| | - Lei Zhou
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Chang Dai
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Zhisai Li
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Shuai Zhang
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Yugang Shang
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | | | | | | |
Collapse
|
10
|
Li W, Zhao J, Tian H, Shen Y, Wang Y, Shao M, Xiong T, Yao Y, Zhang L, Chen X, Xiao H, Xiong Y, Yang S, Tan C, Xu H. Gut microbiota enhance energy accumulation of black-necked crane to cope with impending migration. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12598-x. [PMID: 37249588 DOI: 10.1007/s00253-023-12598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Less is known about the role of gut microbiota in overwintering environmental adaptation in migratory birds. Here, we performed metagenomic sequencing on fresh fecal samples (n = 24) collected during 4 periods of overwintering (Dec: early; Jan: middle I; Feb: middle II; Mar: late) to characterize gut microbial taxonomic and functional characteristics of black-necked crane (Grus nigricollis). The results demonstrated no significant change in microbial diversity among overwintering periods. Analysis of compositions of microbiomes with bias correction (ANCOM-BC) determined 15 Proteobacteria species enriched in late overwintering period. Based on previous reports, these species are associated with degradation of chitin, cellulose, and lipids. Meanwhile, fatty acid degradation and betalain biosynthesis pathways are enriched in late overwintering period. Furthermore, metagenomic binning obtained 91 high-quality bins (completeness >70% and contamination <10%), 5 of which enriched in late overwintering period. Carnobacterium maltaromaticum, unknown Enterobacteriaceae, and Yersinia frederiksenii have genes for chitin and cellulose degradation, acetate, and glutamate production. Unknown Enterobacteriaceae and Y. frederiksenii hold genes for synthesis of 10 essential amino acids required by birds, and the latter has genes for γ-aminobutyrate production. C. maltaromaticum has genes for pyridoxal synthesis. These results implied the gut microbiota is adapted to the host diet and may help black-necked cranes in pre-migratory energy accumulation by degrading the complex polysaccharide in their diet, supplying essential amino acids and vitamin pyridoxal, and producing acetate, glutamate, and γ-aminobutyrate that could stimulate host feeding. Additionally, enriched Proteobacteria also encoded more carbohydrate-active enzymes (CAZymes) and antibiotic resistance genes (ARGs) in late overwintering period. KEY POINTS: • Differences in gut microbiota function during overwintering period of black-necked cranes depend mainly on changes in core microbiota abundance • Gut microbiota of black-necked crane adapted to the diet during overwintering period • Gut microbiota could help black-necked cranes to accumulate more energy in the late overwintering period.
Collapse
Affiliation(s)
- Wenhao Li
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Junsong Zhao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Hong Tian
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Yanqiong Shen
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Yuanjian Wang
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Yunnan Province, Zhaotong, 657000, Yunnan, China
| | - Mingcui Shao
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Yunnan Province, Zhaotong, 657000, Yunnan, China
| | - Tingsong Xiong
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Yunnan Province, Zhaotong, 657000, Yunnan, China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Lin Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xinyu Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Hongtao Xiao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ying Xiong
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Shengzhi Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Cui Tan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
11
|
Highland adaptation of birds on the Qinghai-Tibet Plateau via gut microbiota. Appl Microbiol Biotechnol 2022; 106:6701-6711. [PMID: 36097173 DOI: 10.1007/s00253-022-12171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Highland birds evolve multiple adaptive abilities to cope with the harsh environments; however, how they adapt to the high-altitude habitats via the gut microbiota remains understudied. Here we integrated evidences from comparative analysis of gut microbiota to explore the adaptive mechanism of black-necked crane, a typical highland bird in the Qinghai-Tibet Plateau. Firstly, the gut microbiota diversity and function was compared among seven crane species (one high-altitude species and six low-altitude species), and then among three populations of contrasting altitudes for the black-necked crane. Microbiota community diversity in black-necked crane was significantly lower than its low-altitude relatives, but higher microbiota functional diversity was observed in black-necked crane, suggesting that unique bacteria are developed and acquired due to the selection pressure of high-altitude environments. The functional microbial genes differed significantly between the low- and high-altitude black-necked cranes, indicating that altitude significantly impacted microbial communities' composition and structure. Adaptive changes in microbiota diversity and function are observed in response to high-altitude environments. These findings provide us a new insight into the adaptation mechanism to the high-altitude environment for birds via the gut microbiota. KEY POINTS: • The diversity and function of gut microbiota differed significantly between the low- and high-altitude crane species. • Black-necked crane adapts to the high-altitude environment via specific gut microbiota. • Altitude significantly impacted microbial communities' composition and structure.
Collapse
|