1
|
Liu X, Haugh W, Zhang Z, Huang J. Emerging Role of Long, Non-Coding RNA Nuclear-Enriched Abundant Transcript 1 in Stress- and Immune-Related Diseases. Int J Mol Sci 2025; 26:4413. [PMID: 40362651 PMCID: PMC12072541 DOI: 10.3390/ijms26094413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/03/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025] Open
Abstract
Long, non-coding RNAs (lncRNAs) are a class of RNAs exceeding 200 nucleotides in length, lacking the ability to be translated into proteins. Over the past few decades, an increasing number of publications have established lncRNAs as potent regulators in a broad spectrum of diseases. They modulate the expression of critical genes by affecting transcription, post-transcription, translation, and protein modification. This regulation frequently involves the interaction of lncRNAs with various molecules, such as proteins, RNA, and DNA. lncRNAs are involved in diseases where stress is a significant factor. In recent years, lncRNAs have been identified as regulators of both innate and adaptive immune responses, playing significant roles in the onset and progression of diseases. Additionally, lncRNAs hold potential as biomarkers or therapeutic targets for numerous stress- and immune-related diseases. lncRNA nuclear-enriched abundant transcript 1 (NEAT1) is a notable example. This review consolidates the latest findings about the role of lncRNA NEAT1 in stress response and immune cell function in non-cancer diseases. It summarizes studies on NEAT1 regulating stress response, both innate and adaptive immunity, and its potential as a biomarker and therapeutic target for stress- and immune-related diseases.
Collapse
Affiliation(s)
- Xingliang Liu
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA; (X.L.); (W.H.)
| | - William Haugh
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA; (X.L.); (W.H.)
| | - Ziqiang Zhang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Jianguo Huang
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA; (X.L.); (W.H.)
| |
Collapse
|
2
|
Wei X, Weng Z, Xu X, Yao J. Exploration of a miRNA-mRNA network shared between acute pancreatitis and Epstein-Barr virus infection by integrated bioinformatics analysis. PLoS One 2024; 19:e0311130. [PMID: 39546499 PMCID: PMC11567522 DOI: 10.1371/journal.pone.0311130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/10/2024] [Indexed: 11/17/2024] Open
Abstract
Acute pancreatitis (AP) stands out as a primary cause of hospitalization within gastrointestinal ailments, attributed to diverse factors, including Epstein-Barr virus (EBV) infection. Nevertheless, the common miRNAs and genes shared between AP and EBV infection remain unclear. In the present study, four datasets GSE194331, GSE42455, GSE45918 and GSE109220 were selected and downloaded from the Gene Expression Omnibus (GEO) database. Differential expression analysis was performed to screen for differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs). Target genes of overlapping DEMs were predicted, and intersections with overlapping DEGs were used to construct a miRNA-mRNA network. In addition, the enrichment analysis, drug prediction, diagnostic accuracy assessment, competitive endogenous RNA (ceRNA) network construction, transcription factor (TF)-miRNA-mRNA network construction, and immune cell infiltration analysis were also carried out. We found a total of 111 genes and 8 miRNAs shared between AP and EBV infection. A miRNA-mRNA network was constructed, which comprised 5 miRNAs and 10 genes exhibiting robust diagnostic performance. Histone deacetylase (HDAC) inhibitor was identified as a novel therapeutic intervention from drug prediction analysis. The results of immune cell infiltration analysis revealed that a consistent and significant difference could be found on activated B cell in AP and EBV-infected individuals in comparison to the controls. Taken together, our work, for the first time, revealed a miRNA-mRNA network shared between AP and EBV infection, thereby enriching a deeper comprehension of the intricate molecular mechanisms and potential therapeutic targets entwined in these two pathological conditions.
Collapse
Affiliation(s)
- Xing Wei
- Department of Infectious Disease, The Nantong First People’s Hospital and The Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Zhen Weng
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xia Xu
- Department of Gastroenterology, The Second People’s Hospital of Nantong and The Affiliated Rehabilitation Hospital of Nantong University, Nantong, China
| | - Jian Yao
- Department of Infectious Disease, The Nantong First People’s Hospital and The Affiliated Hospital 2 of Nantong University, Nantong, China
| |
Collapse
|
3
|
Ahator SD, Hegstad K, Lentz CS, Johannessen M. Deciphering Staphylococcus aureus-host dynamics using dual activity-based protein profiling of ATP-interacting proteins. mSystems 2024; 9:e0017924. [PMID: 38656122 PMCID: PMC11097646 DOI: 10.1128/msystems.00179-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The utilization of ATP within cells plays a fundamental role in cellular processes that are essential for the regulation of host-pathogen dynamics and the subsequent immune response. This study focuses on ATP-binding proteins to dissect the complex interplay between Staphylococcus aureus and human cells, particularly macrophages (THP-1) and keratinocytes (HaCaT), during an intracellular infection. A snapshot of the various protein activity and function is provided using a desthiobiotin-ATP probe, which targets ATP-interacting proteins. In S. aureus, we observe enrichment in pathways required for nutrient acquisition, biosynthesis and metabolism of amino acids, and energy metabolism when located inside human cells. Additionally, the direct profiling of the protein activity revealed specific adaptations of S. aureus to the keratinocytes and macrophages. Mapping the differentially activated proteins to biochemical pathways in the human cells with intracellular bacteria revealed cell-type-specific adaptations to bacterial challenges where THP-1 cells prioritized immune defenses, autophagic cell death, and inflammation. In contrast, HaCaT cells emphasized barrier integrity and immune activation. We also observe bacterial modulation of host processes and metabolic shifts. These findings offer valuable insights into the dynamics of S. aureus-host cell interactions, shedding light on modulating host immune responses to S. aureus, which could involve developing immunomodulatory therapies. IMPORTANCE This study uses a chemoproteomic approach to target active ATP-interacting proteins and examines the dynamic proteomic interactions between Staphylococcus aureus and human cell lines THP-1 and HaCaT. It uncovers the distinct responses of macrophages and keratinocytes during bacterial infection. S. aureus demonstrated a tailored response to the intracellular environment of each cell type and adaptation during exposure to professional and non-professional phagocytes. It also highlights strategies employed by S. aureus to persist within host cells. This study offers significant insights into the human cell response to S. aureus infection, illuminating the complex proteomic shifts that underlie the defense mechanisms of macrophages and keratinocytes. Notably, the study underscores the nuanced interplay between the host's metabolic reprogramming and immune strategy, suggesting potential therapeutic targets for enhancing host defense and inhibiting bacterial survival. The findings enhance our understanding of host-pathogen interactions and can inform the development of targeted therapies against S. aureus infections.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Kristin Hegstad
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Christian S. Lentz
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
Wang Y, Gao L. Cholesterol: A friend to viruses. Int Rev Immunol 2024; 43:248-262. [PMID: 38372266 DOI: 10.1080/08830185.2024.2314577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/21/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Cholesterol is a key life-sustaining molecule which regulates membrane fluidity and serves as a signaling mediator. Cholesterol homeostasis is closely related to various pathological conditions including tumor, obesity, atherosclerosis, Alzheimer's disease and viral infection. Viral infection disrupts host cholesterol homeostasis, facilitating their own survival. Meanwhile, the host cells strive to reduce cholesterol accessibility to limit viral infection. This review focuses on the regulation of cholesterol metabolism and the role of cholesterol in viral infection, specifically providing an overview of cholesterol as a friend to promote viral entry, replication, assembly, release and immune evasion, which might inspire valuable thinking for pathogenesis and intervention of viral infection.
Collapse
Affiliation(s)
- Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
5
|
Liang Y, Zhan J, Shi H, Ye W, Zhang K, Li J, Wang W, Wang P, Zhang Y, Lian J, Zheng X. The Role of Long Noncoding RNA Negative Regulator of Interferon Response in the Regulation of Hantaan Virus Infection. Viral Immunol 2024; 37:44-56. [PMID: 38324005 DOI: 10.1089/vim.2023.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Hantaan virus (HTNV) is prevalent in Eurasia. It causes hemorrhagic fever with renal syndrome (HFRS). Long noncoding RNAs (lncRNAs) play key roles in regulating innate immunity. Among these, lncRNA negative regulator of interferon response (NRIR) was reported as an inhibitor of several interferon (IFN)-stimulated genes. Our results showed that: NRIR expression was upregulated by HTNV infection in a type I IFN-dependent manner. The expression of NRIR in CD14+ monocytes from HFRS patients in acute phase was significantly higher than that in convalescent phase and healthy controls. HTNV infection in some HTNV-compatible cells was promoted by NRIR. NRIR negatively regulated innate immunity, especially IFITM3 expression. Localized in the nucleus, NRIR bound with HNRNPC, and knockdown of HNRNPC significantly weakened the effect of NRIR in promoting HTNV infection and restored IFITM3 expression. These results indicated that NRIR regulates the innate immune response against HTNV infection possibly through its interaction with HNRNPC and its influence on IFITM3.
Collapse
Affiliation(s)
- Yan Liang
- College of Life Sciences, Northwest University, Xi'an, China
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jiayi Zhan
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Hongyan Shi
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Medical College of Yan'an University, Yan'an, China
| | - Wei Ye
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Kaixuan Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Medical College of Yan'an University, Yan'an, China
| | - Jiayu Li
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Wei Wang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Pingzhong Wang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Ying Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jianqi Lian
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xuyang Zheng
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
6
|
Farzaneh M, Abouali Gale Dari M, Anbiyaiee A, Najafi S, Dayer D, Mousavi Salehi A, Keivan M, Ghafourian M, Uddin S, Azizidoost S. Emerging roles of the long non-coding RNA NEAT1 in gynecologic cancers. J Cell Commun Signal 2023; 17:531-547. [PMID: 37310654 PMCID: PMC10409959 DOI: 10.1007/s12079-023-00746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/10/2023] [Indexed: 06/14/2023] Open
Abstract
Gynecologic cancers are a worldwide problem among women. Recently, molecular targeted therapy opened up an avenue for cancer diagnosis and treatment. Long non-coding RNAs (lncRNAs) are RNA molecules (> 200 nt) that are not translated into protein, and interact with DNA, RNA, and proteins. LncRNAs were found to play pivotal roles in cancer tumorigenesis and progression. Nuclear paraspeckle assembly transcript 1 (NEAT1) is a lncRNA that mediates cell proliferation, migration, and EMT in gynecologic cancers by targeting several miRNAs/mRNA axes. Therefore, NEAT1 may function as a potent biomarker for the prediction and treatment of breast, ovarian, cervical, and endometrial cancers. In this narrative review, we summarized various NEAT1-related signaling pathways that are critical in gynecologic cancers. Long non-coding RNA (lncRNA) by targeting various signaling pathways involved in its target genes can regulate the occurrence of gynecologic cancers.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dian Dayer
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abdolah Mousavi Salehi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mona Keivan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehri Ghafourian
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050, Doha, Qatar
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 22602 India
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Xie K, Yang Q, Yan Z, Huang X, Wang P, Gao X, Gun S. Identification of a Novel lncRNA LNC_001186 and Its Effects on CPB2 Toxin-Induced Apoptosis of IPEC-J2 Cells. Genes (Basel) 2023; 14:genes14051047. [PMID: 37239407 DOI: 10.3390/genes14051047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The Clostridium perfringens (C. perfringen) beta2 (CPB2) toxin produced by C. perfringens type C (CpC) can cause necrotizing enteritis in piglets. Immune system activation in response to inflammation and pathogen infection is aided by long non-coding RNAs (lncRNAs). In our previous work, we revealed the differential expression of the novel lncRNA LNC_001186 in CpC-infected ileum versus healthy piglets. This implied that LNC_001186 may be a regulatory factor essential for CpC infection in piglets. Herein, we analyzed the coding ability, chromosomal location and subcellular localization of LNC_001186 and explored its regulatory role in CPB2 toxin-induced apoptosis of porcine small intestinal epithelial (IPEC-J2) cells. RT-qPCR results indicated that LNC_001186 expression was highly enriched in the intestines of healthy piglets and significantly increased in CpC-infected piglets' ileum tissue and CPB2 toxin-treated IPEC-J2 cells. The total sequence length of LNC_001186 was 1323 bp through RACE assay. CPC and CPAT, two online databases, both confirmed that LNC_001186 had a low coding ability. It was present on pig chromosome 3. Cytoplasmic and nuclear RNA isolation and RNA-FISH assays showed that LNC_001186 was present in the nucleus and cytoplasm of IPEC-J2 cells. Furthermore, six target genes of LNC_001186 were predicted using cis and trans approaches. Meanwhile, we constructed ceRNA regulatory networks with LNC_001186 as the center. Finally, LNC_001186 overexpression inhibited IPEC-J2 cells' apoptosis caused by CPB2 toxin and promoted cell viability. In summary, we determined the role of LNC_001186 in IPEC-J2 cells' apoptosis caused by CPB2 toxin, which assisted us in exploring the molecular mechanism of LNC_001186 in CpC-induced diarrhea in piglets.
Collapse
Affiliation(s)
- Kaihui Xie
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
| |
Collapse
|
8
|
Zhang X, Zhang Y, Liu H, Tang K, Zhang C, Wang M, Xue M, Jia X, Hu H, Li N, Zhuang R, Jin B, Zhang F, Zhang Y, Ma Y. IL-15 induced bystander activation of CD8 + T cells may mediate endothelium injury through NKG2D in Hantaan virus infection. Front Cell Infect Microbiol 2022; 12:1084841. [PMID: 36590594 PMCID: PMC9797980 DOI: 10.3389/fcimb.2022.1084841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Hantaan virus (HTNV) can cause endothelium injury in hemorrhagic fever with renal syndrome (HFRS) patients. Bystander activation of CD8+ T cells by virus infection has been shown that was involved in host injury, but it is unclear during HTNV infection. This project aimed to study the effect of bystander-activated CD8+ T cell responses in HTNV infection. Methods The in vitro infection model was established to imitate the injury of endothelium in HFRS patients. Flow cytometry was performed to detect the expression of markers of tetramer+ CD8+ T cells and human umbilical vein endothelial cells (HUVECs). The levels of interleukin-15 (IL-15) in serum and supermanant were detected using ELISA kit. The expression of MICA of HUVECs was respectively determined by flow cytometry and western blot. The cytotoxicity of CD8+ T cells was assessed through the cytotoxicity assay and antibody blocking assay. Results EBV or CMV-specific CD8+ T cells were bystander activated after HTNV infection in HFRS patients. HTNV-infected HUVECs in vitro could produce high levels of IL-15, which was positively correlated with disease severity and the expression of NKG2D on bystander-activated CD8+ T cells. Moreover, the elevated IL-15 could induce activation of CD122 (IL-15Rβ)+NKG2D+ EBV/CMV-specific CD8+ T cells. The expression of IL-15Rα and ligand for NKG2D were upregulated on HTNV-infected HUVECs. Bystander-activated CD8+ T cells could exert cytotoxicity effects against HTNV-infected HUVECs, which could be enhanced by IL-15 stimulation and blocked by NKG2D antibody. Discussion IL-15 induced bystander activation of CD8+ T cells through NKG2D, which may mediate endothelium injury during HTNV infection in HFRS patients.
Collapse
Affiliation(s)
- Xiyue Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,Basic Medicine School, Yanan University, Yan’an, China
| | - Yusi Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - He Liu
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Kang Tang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Chunmei Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Meng Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,Basic Medicine School, Yanan University, Yan’an, China
| | - Manling Xue
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,Basic Medicine School, Yanan University, Yan’an, China
| | - Xiaozhou Jia
- Department of Infectious Diseases, Eighth Hospital of Xi'an, Xi’an, China
| | - Haifeng Hu
- Center for Infectious Diseases, Tangdu Hospital, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Na Li
- Department of Transfusion Medicine, Xijing Hospital, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Ran Zhuang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Boquan Jin
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Fanglin Zhang
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Yun Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,*Correspondence: Yun Zhang, ; Ying Ma,
| | - Ying Ma
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,*Correspondence: Yun Zhang, ; Ying Ma,
| |
Collapse
|