1
|
Wang Q, Liu CZ, Li BT, Yu XQ, Zhang JY, Wang ZT, Liao LJ, Liu XD. Ozone controls the metabolism of tryptophan protecting against sepsis-induced intestinal damage by activating aryl hydrocarbon receptor. World J Gastroenterol 2025; 31:105411. [DOI: 10.3748/wjg.v31.i17.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/10/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Intestinal injury is the most common complication of sepsis, and the mitigation of intestinal damage is crucial for treating sepsis.
AIM To examine the use of ozone-rich water and its action in preventing intestinal damage caused by sepsis.
METHODS Through histological analysis, immunohistochemistry, immunofluorescence assays, and Western blot detection, we evaluated the therapeutic efficacy of ozone in mitigating intestinal injury during sepsis. Additionally, by conducting 16S rRNA sequencing and untargeted metabolomics analysis on fecal samples, we identified alterations in the gut microbiota and specific metabolites in septic mice following ozone treatment. This comprehensive approach aims to further elucidate the mechanistic underpinnings of ozone therapy in alleviating sepsis-induced intestinal damage.
RESULTS Our results demonstrate that ozonated water significantly ameliorates pathological damage in intestinal tissues, enhances the expression of tight junction proteins, and inhibits the polarization of intestinal macrophages, thereby reducing the expression of inflammatory cytokines in intestinal tissues of cecal ligation and puncture-induced septic mice. 16S rRNA sequencing analysis revealed that ozonated water increased the abundance of beneficial bacteria and alleviated gut microbiota dysbiosis. Studies using broad-spectrum antibiotic-treated mice indicated that the protective effects of ozonated water on intestinal injury are dependent on the gut microbiota. Furthermore, metabolomic analysis identified an increase in the tryptophan metabolite DL-tryptophan in the ozonated water treatment group. This suggests that ozonated water protects against intestinal injury by activating the aryl hydrocarbon receptor and suppressing necroptosis in intestinal epithelial cells.
CONCLUSION Ozone protected against sepsis-induced intestinal injury through regulation of the gut microbiota and tryptophan metabolism, inhibiting necrotic apoptosis of intestinal epithelial cells through activation of the aryl hydrocarbon receptor.
Collapse
Affiliation(s)
- Qing Wang
- Department of Anesthesiology and Pain Management, Shanghai East Hospital, Shanghai 200433, China
| | - Chun-Zheng Liu
- Department of Anesthesiology and Pain Management, Shanghai East Hospital, Shanghai 200433, China
| | - Bai-Tian Li
- Department of Anesthesiology and Pain Management, Shanghai East Hospital, Shanghai 200433, China
| | - Xiu-Qin Yu
- Department of Anesthesiology and Pain Management, Shanghai East Hospital, Shanghai 200433, China
| | - Jin-Yuan Zhang
- Department of Anesthesiology and Pain Management, Shanghai East Hospital, Shanghai 200433, China
| | - Ze-Tian Wang
- Department of Anesthesiology and Pain Management, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200240, China
| | - Li-Jun Liao
- Department of Pain Management, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Xiao-Dong Liu
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong; Peter Hung Pain Research Institute
| |
Collapse
|
2
|
Bullon N, Alfaro AC, Manivannan M, Dezfooli SM, Seyfoddin A. Sustainable Aquafeed Formulations Containing Insect Larval Meal and Grape Marc for the New Zealand Farmed Abalone. AQUACULTURE NUTRITION 2023; 2023:8887768. [PMID: 37885797 PMCID: PMC10598505 DOI: 10.1155/2023/8887768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023]
Abstract
The aquaculture industry has been criticised for the excessive use of fish meal (FM) in feeds due to the utilisation of wild fish in the formulation and the exacerbation of overfishing marine resources. Land-based abalone aquaculture mainly uses commercial feeds (CFs) to promote faster growth, which include FM as a primary protein component. Alternative ingredients, such as insect meal (IM) and grape marc (GM) are potential candidates for FM replacement due to their suitable nutritional profile and sustainable production. This paper reports on a novel nutritional approach for the New Zealand farmed abalone, which replaces FM with IM by 10% and includes a waste by-product (GM) by 30% as a potential prebiotic source. The study was performed in two stages: (a) physico-chemical determination of diets delivered in an alginate matrix (experimental diets) and their stability in seawater compared to CF and (b) evaluation of growth and feed intake for the New Zealand black-foot abalone. There were significant differences between experimental diets and CF in terms of sinking rate, particle weight, and microscopic observations. Water stability of the experimental diets was increased by 50% in 24 and 48 hr compared to CF, producing less solid waste, and potentially reducing cleaning efforts in the farm. The inclusion of IM and GM did not compromise overall animal growth or their feed conversion ratio, however, further evaluation need to be explored in the future research. The findings revealed that the developed encapsulated feeds are a more stable food delivery method for Haliotis iris compared to the CF. Furthermore, both IM and GM can be included in feed formulations as a more sustainable strategy without compromising weight and shell gains in the abalone farming.
Collapse
Affiliation(s)
- Natalia Bullon
- Drug Delivery Research Group, School of Science, Auckland University of Technology, Auckland, New Zealand
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Andrea C. Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Auckland, New Zealand
| | | | - Seyedehsara Masoomi Dezfooli
- Drug Delivery Research Group, School of Science, Auckland University of Technology, Auckland, New Zealand
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Ali Seyfoddin
- Drug Delivery Research Group, School of Science, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
3
|
Zou W, Hong J, Yu W, Ma Y, Gan J, Liu Y, Luo X, You W, Ke C. Comprehensive Comparison of Effects of Antioxidant (Astaxanthin) Supplementation from Different Sources in Haliotis discus hannai Diet. Antioxidants (Basel) 2023; 12:1641. [PMID: 37627636 PMCID: PMC10451870 DOI: 10.3390/antiox12081641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Dietary antioxidant supplementation, especially astaxanthin, has shown great results on reproductive aspects, egg quality, growth, survival, immunity, stress tolerance, and disease resistance in aquatic animals. However, the effects of dietary astaxanthin supplementation from different sources are still unknown. A comprehensive comparison of survival, growth, immune response, antioxidant activity, thermal resistance, disease resistance, and intestinal microbial structure was conducted in dietary antioxidant supplementation from the sources of Gracilaria lemaneiformis (GL), industrial synthetic astaxanthin (80 mg/kg astaxanthin actual weight, named as group 'SA80'), Phaffia rhodozyma (80 mg/kg astaxanthin actual weight, named as group 'PR80') and Haematococcus pluvialis (120 mg/kg astaxanthin actual weight, named as group 'HP120') at their optimal supplementation amounts. Furthermore, the SA80, PR80, and HP120 groups performed better in all aspects, including survival, growth, immune response, antioxidant activity, thermal resistance, and disease resistance, compared with the GL group. The PR80 and HP120 group also had a better growth performance than the SA80 group. In terms of heat stress and bacterial challenge, abalone in the PR80 group showed the strongest resistance. Overall, 80 mg/kg astaxanthin supplementation from Phaffia rhodozyma was recommended to obtain a more effective and comprehensive outcome. This study contributes to the discovery of the optimum dietary astaxanthin supplementation source for abalone, which is helpful to improve the production efficiency and economic benefits of abalone. Future research can further explore the action mechanism and the method of application of astaxanthin to better exploit its antioxidant role.
Collapse
Affiliation(s)
- Weiguang Zou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.Z.); (J.H.); (W.Y.); (Y.M.); (J.G.); (Y.L.); (W.Y.)
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363400, China
| | - Jiawei Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.Z.); (J.H.); (W.Y.); (Y.M.); (J.G.); (Y.L.); (W.Y.)
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363400, China
| | - Wenchao Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.Z.); (J.H.); (W.Y.); (Y.M.); (J.G.); (Y.L.); (W.Y.)
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363400, China
| | - Yaobin Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.Z.); (J.H.); (W.Y.); (Y.M.); (J.G.); (Y.L.); (W.Y.)
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363400, China
| | - Jiacheng Gan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.Z.); (J.H.); (W.Y.); (Y.M.); (J.G.); (Y.L.); (W.Y.)
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363400, China
| | - Yanbo Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.Z.); (J.H.); (W.Y.); (Y.M.); (J.G.); (Y.L.); (W.Y.)
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363400, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.Z.); (J.H.); (W.Y.); (Y.M.); (J.G.); (Y.L.); (W.Y.)
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363400, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.Z.); (J.H.); (W.Y.); (Y.M.); (J.G.); (Y.L.); (W.Y.)
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363400, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.Z.); (J.H.); (W.Y.); (Y.M.); (J.G.); (Y.L.); (W.Y.)
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363400, China
| |
Collapse
|
4
|
Fu Y, Gao H, Hou X, Chen Y, Xu K. Pretreatment with IPA ameliorates colitis in mice: Colon transcriptome and fecal 16S amplicon profiling. Front Immunol 2022; 13:1014881. [PMID: 36159803 PMCID: PMC9495931 DOI: 10.3389/fimmu.2022.1014881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
3-Indolepropionic acid (IPA) is a tryptophan metabolite that has anti-inflammatory properties. The present study try to investigate the phylactic effects of IPA on dextran sodium sulfate (DSS)-induced colitis mice. The results showed that IPA pretreatment ameliorated the DSS-induced decrease in growth performance, and intestinal damage and enhanced immunity in mice. RNA-seq analysis of mouse colon samples revealed that the differentially expressed genes (DEGs) were mainly enriched in immune-related pathways. 16S rRNA sequencing showed that IPA pretreatment ameliorated DSS-induced colonic microbiota dysbiosis. Moreover, the expression levels of gut immune genes were positively correlated with the relative abundance of several probiotics, such as Alloprevotella and Catenibacterium. In conclusion, IPA alleviates DSS-induced acute colitis in mice by regulating inflammatory cytokines, balancing the colonic microbiota and modulating the expression of genes related to inflammation, which would also provide a theoretical basis for IPA as a strategy to improve intestinal health.
Collapse
Affiliation(s)
- Yawei Fu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Hu Gao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiaohong Hou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yue Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Kang Xu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Kang Xu,
| |
Collapse
|