1
|
Lebedev A, Kim K, Ozhmegova E, Antonova A, Kazennova E, Tumanov A, Kuznetsova A. Rev Protein Diversity in HIV-1 Group M Clades. Viruses 2024; 16:759. [PMID: 38793640 PMCID: PMC11125641 DOI: 10.3390/v16050759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The HIV-1 Rev protein expressed in the early stage of virus replication is involved in the nuclear export of some forms of virus RNA. Naturally occurring polymorphisms in the Rev protein could influence its activity. The association between the genetic features of different virus variants and HIV infection pathogenesis has been discussed for many years. In this study, Rev diversity among HIV-1 group M clades was analyzed to note the signatures that could influence Rev activity and, subsequently, clinical characteristics. From the Los Alamos HIV Sequence Database, 4962 Rev sequences were downloaded and 26 clades in HIV-1 group M were analyzed for amino acid changes, conservation in consensus sequences, and the presence of clade-specific amino acid substitutions (CSSs) and the Wu-Kabat protein variability coefficient (WK). Subtypes G, CRF 02_AG, B, and A1 showed the largest amino acid changes and diversity. The mean conservation of the Rev protein was 80.8%. In consensus sequences, signatures that could influence Rev activity were detected. In 15 out of 26 consensus sequences, an insertion associated with the reduced export activity of the Rev protein, 95QSQGTET96, was identified. A total of 32 CSSs were found in 16 clades, wherein A6 had the 41Q substitution in the functionally significant region of Rev. The high values of WK coefficient in sites 51 and 82, located on the Rev interaction surface, indicate the susceptibility of these positions to evolutionary replacements. Thus, the noted signatures require further investigation.
Collapse
Affiliation(s)
- Aleksey Lebedev
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
- Mechnikov Scientific Research Institute of Vaccines and Serums, 105064 Moscow, Russia
| | - Kristina Kim
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Ekaterina Ozhmegova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Anastasiia Antonova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Elena Kazennova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Aleksandr Tumanov
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Anna Kuznetsova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| |
Collapse
|
2
|
Jenkins F, Le T, Farhat R, Pinto A, Anzari A, Bonsall D, Golubchik T, Bowden R, Lee FJ, van Hal SJ. Validation of an HIV whole genome sequencing method for HIV drug resistance testing in an Australian clinical microbiology laboratory. J Med Virol 2023; 95:e29273. [PMID: 38050831 DOI: 10.1002/jmv.29273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
Detection of HIV drug resistance (HIVDR) is vital to successful anti-retroviral therapy (ART). HIVDR testing to determine drug-resistance mutations is routinely performed in Australia to guide ART choice in newly diagnosed people living with HIV or in cases of treatment failure. In 2022, our clinical microbiology laboratory sought to validate a next-generation sequencing (NGS)-based HIVDR assay to replace the previous Sanger-sequencing (SS)-based ViroSeq. NGS solutions for HIVDR offer higher throughput, lower costs and higher sensitivity for variant detection. We sought to validate the previously described low-cost probe-based NGS method (veSEQ-HIV) for whole-genome recovery and HIVDR-testing in a diagnostic setting. veSEQ-HIV displayed 100% and 98% accuracy in major and minor mutation detection, respectively, and 100% accuracy of subtyping (provided > 1000 mapped reads were obtained). Pairwise comparison exhibited low inter-and intrarun variability across the whole-genome (Jaccard index [J] = 0.993; J = 0.972) and the Pol gene (J = 0.999; J = 0.999), respectively. veSEQ-HIV met all our pre-set criteria based on WHO recommendations and successfully replaced ViroSeq in our laboratory. Scaling-down veSEQ-HIV to a limited batch size and sequencing on Illumina iSeq. 100, allowed easy implementation of the assay into the workflow of a small sequencing laboratory with minimal staff and equipment and the ability to meet clinically relevant test turn-around times. As HIVDR-testing moves from SS- to NGS-based methods and new ART drugs come to market (particularly those with targets outside the Pol region), whole-genome recovery using veSEQ-HIV provides a robust, cost-effective and "future-proof" NGS method for HIVDR-testing.
Collapse
Affiliation(s)
- Frances Jenkins
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Thomas Le
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Rima Farhat
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Angie Pinto
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, Australia
- The Kirby Institute, UNSW Australia, Sydney, Australia
| | - Azim Anzari
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - David Bonsall
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Tanya Golubchik
- Department of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Rory Bowden
- The Walter and Eliza Hall Institute of Medical Research, Advanced Genomics Facility, Melbourne, Australia
| | - Frederick J Lee
- Department of Clinical Immunology and Allergy, Royal Prince Alfred Hospital, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Sebastiaan J van Hal
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
3
|
Mbuagbaw L, Garcia C, Brenner B, Cecchini D, Chakroun M, Djiadeu P, Holguin A, Mor O, Parkin N, Santoro MM, Ávila-Ríos S, Fokam J, Phillips A, Shafer RW, Jordan MR. Checklist for studies of HIV drug resistance prevalence or incidence: rationale and recommended use. Lancet HIV 2023; 10:e684-e689. [PMID: 37716367 PMCID: PMC11060097 DOI: 10.1016/s2352-3018(23)00173-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/24/2023] [Accepted: 07/05/2023] [Indexed: 09/18/2023]
Abstract
HIV drug resistance (HIVDR) is a major challenge to the effectiveness of antiretroviral therapy. Global efforts in addressing HIVDR require clear, transparent, and replicable reporting in HIVDR studies. We describe the rationale and recommended use of a checklist that should be included in reports of HIVDR incidence and prevalence. After preliminary consultations with experts on HIVDR and establishing the need for guidance on HIVDR reporting, we used a sequential, explanatory, mixed methods approach to create the checklist; together with the accompanying articles, the checklist was reviewed by the authors and validated externally. The checklist for studies on HIVDR prevalence or incidence (CEDRIC-HIV) includes 15 recommended items that would enhance transparency and facilitate interpretation, comparability, and replicability of HIVDR studies. CEDRIC-HIV will help authors of HIVDR studies prepare research reports and assist reviewers and editors in assessments of completeness of reporting. The checklist will also facilitate statistical pooling and interpretation of HIVDR data.
Collapse
Affiliation(s)
- Lawrence Mbuagbaw
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada; Department of Anesthesia, McMaster University, Hamilton, ON, Canada; Department of Pediatrics, McMaster University, Hamilton, ON, Canada; Biostatistics Unit, Father Sean O'Sullivan Research Centre, St Joseph's Healthcare, Hamilton, ON, Canada; Centre for Development of Best Practices in Health, Yaoundé Central Hospital, Yaoundé, Cameroon; Department of Global Health, Stellenbosch University, Cape Town, South Africa.
| | - Cristian Garcia
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Bluma Brenner
- McGill Centre for Viral Diseases, Lady Davis Institute for Medical Research, Montréal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada; Department of Medicine, Surgery, and Infectious Disease, McGill University, Montréal, QC, Canada
| | - Diego Cecchini
- Hospital General de Agudos Dr. Cosme Argerich, Buenos Aires, Argentina; Helios Salud, Buenos Aires, Argentina
| | - Mohamed Chakroun
- Infectious Diseases Department, Fatouma Bourguiba University Hospital, Monastir, Tunisia
| | - Pascal Djiadeu
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada; Yale University School of Nursing, Yale University, West Haven, CT, USA; Centre for Urban Health Solutions, St Michael's Hospital, Toronto, ON, Canada
| | - Africa Holguin
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Ramón y Cajal-IRYCIS and CIBEREsp-RITIP, Madrid, Spain
| | - Orna Mor
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Central Virology Laboratory, Ministry of Health and Sheba Medical Centre, Tel-Hashomer, Israel
| | | | - Maria M Santoro
- Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Santiago Ávila-Ríos
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico; Centro de Investigaciones en Enfermedades Infecciosas, Mexico City, Mexico
| | - Joseph Fokam
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon; Faculty of Health Science, University of Buea, Buea, Cameroon; National HIV Drug Resistance Working Group, Ministry of Public Health, Yaoundé, Cameroon
| | - Andrew Phillips
- Institute for Global Health, University College London, London, UK
| | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Michael R Jordan
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, USA; Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA; Tufts Center for Integrated Management of Antimicrobial Resistance, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
4
|
Rodríguez-Galet A, Ventosa-Cubillo J, Bendomo V, Eyene M, Mikue-Owono T, Nzang J, Ncogo P, Gonzalez-Alba JM, Benito A, Holguín Á. High Drug Resistance Levels Compromise the Control of HIV Infection in Pediatric and Adult Populations in Bata, Equatorial Guinea. Viruses 2022; 15:27. [PMID: 36680067 PMCID: PMC9864178 DOI: 10.3390/v15010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
A lack of HIV viral load (VL) and HIV drug resistance (HIVDR) monitoring in sub-Saharan Africa has led to an uncontrolled circulation of HIV-strains with drug resistance mutations (DRM), compromising antiretroviral therapy (ART). This study updates HIVDR data and HIV-1 variants in Equatorial Guinea (EG), providing the first data on children/adolescents in the country. From 2019−2020, 269 dried blood samples (DBS) were collected in Bata Regional Hospital (EG) from 187 adults (73 ART-naïve/114 ART-treated) and 82 children/adolescents (25 HIV-exposed-ART-naïve/57 ART-treated). HIV-1 infection was confirmed in Madrid by molecular/serological confirmatory tests and ART-failure by VL quantification. HIV-1 pol region was identified as transmitted/acquired DRM, predicted antiretroviral susceptibility (Stanfordv9.0) and HIV-1 variants (phylogeny). HIV infection was confirmed in 88.1% of the individuals and virological failure (VL > 1000 HIV-1-RNA copies/mL) in 84.2/88.9/61.9% of 169 ART-treated children/adolescents/adults. Among the 167 subjects with available data, 24.6% suffered a diagnostic delay. All 125 treated had experienced nucleoside retrotranscriptase inhibitors (NRTI); 95.2% were non-NRTI (NNRTI); 22.4% had experienced integrase inhibitors (INSTI); and 16% had experienced protease inhibitors (PI). At sampling, they had received 1 (37.6%), 2 (32%), 3 (24.8%) or 4 (5.6%) different ART-regimens. Among the 43 treated children−adolescents/37 adults with sequence, 62.8/64.9% carried viruses with major-DRM. Most harbored DRM to NNRTI (68.4/66.7%), NRTI (55.3/43.3%) or NRTI+NNRTI (50/33.3%). One adult and one child carried major-DRM to PI and none carried major-DRM to INSTI. Most participants were susceptible to INI and PI. DRM was absent in 36.2% of treated patients with VL > 1000 cp/mL, suggesting adherence failure. TDR prevalence in 59 ART-naïve adults was high (20.3%). One-half (53.9%) of the 141 subjects with pol sequence carried CRF02_AG. The observed high rate of ART-failure and transmitted/acquired HIVDR could compromise the 95-95-95-UNAIDS targets in EG. Routine VL and resistance monitoring implementation are mandatory for early detection of ART-failure and optimal rescue therapy selection ART regimens based on PI, and INSTI can improve HIV control in EG.
Collapse
Affiliation(s)
- Ana Rodríguez-Galet
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Ramón y Cajal-IRYCIS and CIBEREsp-RITIP-CoRISpe, 20834 Madrid, Spain
| | - Judit Ventosa-Cubillo
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Ramón y Cajal-IRYCIS and CIBEREsp-RITIP-CoRISpe, 20834 Madrid, Spain
- Fundación Estatal, Salud, Infancia y Bienestar Social (CSAI), 28029 Madrid, Spain
| | - Verónica Bendomo
- Unidad de Referencia de Enfermedades Infecciosas (UREI), Hospital Regional de Bata, Bata 88240, Equatorial Guinea
| | - Manuel Eyene
- Unidad de Referencia de Enfermedades Infecciosas (UREI), Hospital Regional de Bata, Bata 88240, Equatorial Guinea
| | - Teresa Mikue-Owono
- Laboratorio de Análisis Clínicos, Hospital Regional de Bata, Bata 88240, Equatorial Guinea
| | - Jesús Nzang
- Fundación Estatal, Salud, Infancia y Bienestar Social (CSAI), 28029 Madrid, Spain
| | - Policarpo Ncogo
- Fundación Estatal, Salud, Infancia y Bienestar Social (CSAI), 28029 Madrid, Spain
| | - José María Gonzalez-Alba
- Grupo de Investigación en Microbiología Translacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Microbiology Department, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Agustín Benito
- Centro Nacional de Medicina Tropical (CNMT), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Ramón y Cajal-IRYCIS and CIBEREsp-RITIP-CoRISpe, 20834 Madrid, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|