1
|
Cardoso EM, Dea Lindner JD, Ferreira FA. Genomic analysis of Salmonella Heidelberg isolated from the Brazilian poultry farms. Braz J Microbiol 2024; 55:4129-4137. [PMID: 39441515 PMCID: PMC11711797 DOI: 10.1007/s42770-024-01544-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024] Open
Abstract
The rapid expansion of broiler chicken production in Brazil has presented significant sanitation challenges within the poultry industry. Among these challenges, Salmonella enterica subsp. enterica serotype Heidelberg stands as a contributor to global salmonellosis outbreaks. This study analyzed 13 draft genomes of Salmonella Heidelberg isolated from the pre-slaughter broiler chickens farms in Brazil. By conducting in silico analysis of these genomes, the study investigated genome similarity based on single nucleotide polymorphisms (SNPs) and identified genes encoding resistance to antimicrobials, sanitizers, and virulence factors. Furthermore, mobile genetic elements (MGE) were identified to assess their potential role in propagating genes through horizontal gene transfer. A risk classification was also applied based on the resistomes. The genomes revealed a high prevalence of genes conferring resistance to aminoglycosides, fosfomycin, sulfonamides, tetracycline, and genes linked to quaternary ammonium resistance. The study also uncovered six Salmonella pathogenicity islands (SPI) and over 100 genes encoding virulence factors. The association of MGE with antibiotic-resistant genes sul2 and blaCMY-2 raised concerns about the potential transfer to other bacteria, posing a substantial risk for spreading resistance mechanisms according to established risk protocols. Additionally, SNP analysis indicated close phylogenetic relationships among some isolates, suggesting a common origin. This study enhances our understanding of Salmonella Heidelberg strains by identifying key risk factors for transmission and revealing the association between resistance genes and MGEs. This insight provides a foundation for developing and implementing effective control, monitoring, and treatment strategies in the poultry industry.
Collapse
Affiliation(s)
- Emanuela Mendes Cardoso
- Bacterial Molecular Genetics Laboratory (GeMBac), Department of Microbiology, Immunology, and Parasitology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), Campus Universitário Reitor João David Ferreira Lima, Trindade, Florianópolis, SC, 88040-960, Brazil
| | - Juliano De Dea Lindner
- Food Technology and Bioprocess Research Group, Department of Food Science and Technology, Agricultural Sciences Center, UFSC, Rodovia Admar Gonzaga, 1346. Itacorubi., Florianópolis, SC, 88034-001, Brazil
| | - Fabienne Antunes Ferreira
- Bacterial Molecular Genetics Laboratory (GeMBac), Department of Microbiology, Immunology, and Parasitology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), Campus Universitário Reitor João David Ferreira Lima, Trindade, Florianópolis, SC, 88040-960, Brazil.
| |
Collapse
|
2
|
Bakhtiyari N, Farajnia S, Ghasemali S, Farajnia S, Pormohammad A, Saeidvafa S. Strategies to Overcome Antimicrobial Resistance in Nosocomial Infections, A Review and Update. Infect Disord Drug Targets 2024; 24:e260124226226. [PMID: 38284691 DOI: 10.2174/0118715265276529231214105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024]
Abstract
Nosocomial infections, also known as healthcare-associated infections, are a significant global concern due to their strong association with high mortality and morbidity in both developed and developing countries. These infections are caused by a variety of pathogens, particularly the ESKAPE group of bacteria, which includes the six pathogens Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. These bacteria have demonstrated noteworthy resistance to different antibiotics. Antimicrobial resistance mechanisms can manifest in various forms, including restricting drug uptake, modifying drug targets, inactivating drugs, active drug efflux, and biofilm formation. Accordingly, various strategies have been developed to combat antibiotic-resistant bacteria. These strategies encompass the development of new antibiotics, the utilization of bacteriophages that specifically target these bacteria, antimicrobial combination therapy and the use of peptides or enzymes that target the genomes or essential proteins of resistant bacteria. Among promising approaches to overcome antibiotic resistance, the CRISPR/Cas system stands out and offers many advantages. This system enables precise and efficient editing of genetic material at specific locations in the genome. Functioning as a bacterial "adaptive immune system," the CRISPR/Cas system recognizes, degrades, and remembers foreign DNA sequences through the use of spacer DNA segments that are transcribed into CRISPR RNAs (crRNA). This paper has focused on nosocomial infections, specifically the pathogens involved in hospital infections, the mechanisms underlying bacterial resistance, and the strategies currently employed to address this issue. Special emphasis has been placed on the application of CRISPR/Cas technology for overcoming antimicrobial resistance.
Collapse
Affiliation(s)
- Nasim Bakhtiyari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Ghasemali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Pormohammad
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | |
Collapse
|
3
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Fox E, Gosling R(B, Gil BM, Møretrø T, Stessl B, da Silva Felício MT, Messens W, Simon AC, Alvarez‐Ordóñez A. Persistence of microbiological hazards in food and feed production and processing environments. EFSA J 2024; 22:e8521. [PMID: 38250499 PMCID: PMC10797485 DOI: 10.2903/j.efsa.2024.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Listeria monocytogenes (in the meat, fish and seafood, dairy and fruit and vegetable sectors), Salmonella enterica (in the feed, meat, egg and low moisture food sectors) and Cronobacter sakazakii (in the low moisture food sector) were identified as the bacterial food safety hazards most relevant to public health that are associated with persistence in the food and feed processing environment (FFPE). There is a wide range of subtypes of these hazards involved in persistence in the FFPE. While some specific subtypes are more commonly reported as persistent, it is currently not possible to identify universal markers (i.e. genetic determinants) for this trait. Common risk factors for persistence in the FFPE are inadequate zoning and hygiene barriers; lack of hygienic design of equipment and machines; and inadequate cleaning and disinfection. A well-designed environmental sampling and testing programme is the most effective strategy to identify contamination sources and detect potentially persistent hazards. The establishment of hygienic barriers and measures within the food safety management system, during implementation of hazard analysis and critical control points, is key to prevent and/or control bacterial persistence in the FFPE. Once persistence is suspected in a plant, a 'seek-and-destroy' approach is frequently recommended, including intensified monitoring, the introduction of control measures and the continuation of the intensified monitoring. Successful actions triggered by persistence of L. monocytogenes are described, as well as interventions with direct bactericidal activity. These interventions could be efficient if properly validated, correctly applied and verified under industrial conditions. Perspectives are provided for performing a risk assessment for relevant combinations of hazard and food sector to assess the relative public health risk that can be associated with persistence, based on bottom-up and top-down approaches. Knowledge gaps related to bacterial food safety hazards associated with persistence in the FFPE and priorities for future research are provided.
Collapse
|
4
|
Monte DFM. My CRISPR Story: Back to Brazil. CRISPR J 2023; 6:313-315. [PMID: 37406248 DOI: 10.1089/crispr.2023.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Affiliation(s)
- Daniel F M Monte
- Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University (Unesp), Jaboticabal, Brazil
| |
Collapse
|
5
|
Liao X, Deng R, Warriner K, Ding T. Antibiotic resistance mechanism and diagnosis of common foodborne pathogens based on genotypic and phenotypic biomarkers. Compr Rev Food Sci Food Saf 2023; 22:3212-3253. [PMID: 37222539 DOI: 10.1111/1541-4337.13181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/22/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023]
Abstract
The emergence of antibiotic-resistant bacteria due to the overuse or inappropriate use of antibiotics has become a significant public health concern. The agri-food chain, which serves as a vital link between the environment, food, and human, contributes to the large-scale dissemination of antibiotic resistance, posing a concern to both food safety and human health. Identification and evaluation of antibiotic resistance of foodborne bacteria is a crucial priority to avoid antibiotic abuse and ensure food safety. However, the conventional approach for detecting antibiotic resistance heavily relies on culture-based methods, which are laborious and time-consuming. Therefore, there is an urgent need to develop accurate and rapid tools for diagnosing antibiotic resistance in foodborne pathogens. This review aims to provide an overview of the mechanisms of antibiotic resistance at both phenotypic and genetic levels, with a focus on identifying potential biomarkers for diagnosing antibiotic resistance in foodborne pathogens. Furthermore, an overview of advances in the strategies based on the potential biomarkers (antibiotic resistance genes, antibiotic resistance-associated mutations, antibiotic resistance phenotypes) for antibiotic resistance analysis of foodborne pathogens is systematically exhibited. This work aims to provide guidance for the advancement of efficient and accurate diagnostic techniques for antibiotic resistance analysis in the food industry.
Collapse
Affiliation(s)
- Xinyu Liao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo, Zhejiang, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, Zhejiang, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, China
| | - Keith Warriner
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, Zhejiang, China
| |
Collapse
|
6
|
Vilela FP, Dos Prazeres Rodrigues D, Allard MW, Falcão JP. Genomic analyses of drug-resistant Salmonella enterica serovar Heidelberg strains isolated from meat and related sources between 2013 and 2017 in the south region of Brazil. Curr Genet 2023; 69:141-152. [PMID: 36920496 DOI: 10.1007/s00294-023-01264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
Salmonella enterica serovar Heidelberg (S. Heidelberg) is a zoonotic, ubiquitous, and worldwide-distributed pathogen, responsible for gastroenteritis in humans caused by the consumption of contaminated food. In this study, 11 S. Heidelberg strains isolated from chicken and bovine meat, drag swab, and animal feed between 2013 and 2017 in states of the southern region of Brazil were characterized by whole-genome sequencing (WGS) analyses. Antimicrobial resistance against 18 antimicrobials was determined by disk-diffusion and ciprofloxacin's minimum inhibitory concentration by Etest®. The search for resistance and virulence genes, plasmids, Salmonella Pathogenicity Islands (SPIs) plus multi-locus sequence typing (MLST), and single-nucleotide polymorphisms (SNPs) analyses was conducted using WGS data. All strains harbored resistance genes fosA7, aac(6')-Iaa, sul2, tet(A), blaCMY-2, mdsA, and mdsB, and point mutations in gyrA and parC. All strains showed a phenotypic multidrug-resistant profile, with resistant or intermediate resistant profiles against 14 antimicrobials tested. Plasmids ColpVC, IncC, IncX1, and IncI1-I(Alpha) were detected. Virulence genes related to adherence, macrophage induction, magnesium uptake, regulation, and type III secretion systems plus 10 SPIs were detected. All strains were assigned to ST15 and belonged to two SNP clusters showing high similarity to isolates from the United Kingdom, Chile, Germany, the Netherlands, China, South Africa, and South Korea. In conclusion, the presence of multidrug-resistant S. Heidelberg strains in Brazil showing a global genomic relationship may alert for the necessity of stronger surveillance measures by food safety and public health authorities to limit its spread to humans and animals through foods.
Collapse
Affiliation(s)
- Felipe Pinheiro Vilela
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Av. do Café, s/n, Bloco S-Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | | | - Marc William Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Av. do Café, s/n, Bloco S-Sala 41, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|