1
|
Zschaubitz E, Schröder H, Glackin CC, Vogel L, Labrenz M, Sperlea T. A benchmark analysis of feature selection and machine learning methods for environmental metabarcoding datasets. Comput Struct Biotechnol J 2025; 27:1636-1647. [PMID: 40322584 PMCID: PMC12049816 DOI: 10.1016/j.csbj.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Next-Generation Sequencing methods like DNA metabarcoding enable the generation of large community composition datasets and have grown instrumental in many branches of ecology in recent years. However, the sparsity, compositionality, and high dimensionality of metabarcoding datasets pose challenges in data analysis. In theory, feature selection methods improve the analyzability of eDNA metabarcoding datasets by identifying a subset of informative taxa that are relevant for a certain task and discarding those that are redundant or irrelevant. However, general guidelines on selecting a feature selection method for application to a given setting are lacking. Here, we report a comparison of feature selection methods in a supervised machine learning setup across 13 environmental metabarcoding datasets with differing characteristics. We evaluate workflows that consist of data preprocessing, feature selection and a machine learning model by their ability to capture the ecological relationship between the microbial community composition and environmental parameters. Our results demonstrate that, while the optimal feature selection approach depends on dataset characteristics, feature selection is more likely to impair model performance than to improve it for tree ensemble models like Random Forests. Furthermore, our results show that calculating relative counts impairs model performance, which suggests that novel methods to combat the compositionality of metabarcoding data are required.
Collapse
Affiliation(s)
- Erik Zschaubitz
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Seestraße 15, Rostock, 18119, Germany
| | | | - Conor Christopher Glackin
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Seestraße 15, Rostock, 18119, Germany
| | - Lukas Vogel
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Seestraße 15, Rostock, 18119, Germany
| | - Matthias Labrenz
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Seestraße 15, Rostock, 18119, Germany
| | - Theodor Sperlea
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Seestraße 15, Rostock, 18119, Germany
| |
Collapse
|
2
|
Ho JY, Koh XQ, Kang DY, Low A, Hu D, Haryono MAS, Williams RBH, Case RJ, Boucher YF. Discovery of a phylogenetically novel tropical marine Gammaproteobacteria elucidated from assembled genomes and the proposed transfer of the genus Umboniibacter from the family Cellvibrionaceae to Umboniibacteraceae fam. nov. Front Microbiol 2025; 16:1437936. [PMID: 40226095 PMCID: PMC11985809 DOI: 10.3389/fmicb.2025.1437936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Marine heterotrophic bacteria in coastal waters respond to the influx of carbon from natural and anthropogenic sources. We identified two nearly identical, (99.9% average nucleotide identity; 100% amino acid identity; same DNA G + C content of 52.3 mol%) high-quality (≥99% CheckM completeness and ≤ 1.3% contamination) draft metagenome-assembled genomes (MAGs; SJ0813 and SJ0972) from seawater microbiomes of a southern island of Singapore that is in a protected marine park. The MAGs were only assigned to the Cellvibrionaceae family according to Genome Taxonomy Database. Overall genome related indices to Pseudomaricurvus alkylphenolicus KU41GT as the closest phylogenetic relative revealed no more than 70.45% average nucleotide identity (ANIcutoff < 95%), below the 50% percentage of conserved proteins (POCPcutoff = 43.54%) for genera cutoff and low digital DNA-DNA hybridization values (DDH = 20.6 and 20.8%). The major respiratory quinone is predicted to be ubiquinone-9 from the annotation of 3-demethylubiquinone-9 3-methyltransferase (ubiG, K00568) involved in the last step of the ubiquinone biosynthesis pathway (M00117), which differed from the ubiquinone-8 utilized by known members of Cellvibrionaceae. Both MAGs contained a complete pathway for dissimilatory nitrate reduction to ammonia, which increases bioavailability of nitrogen in seawater. An identical choline dehydrogenase found in both MAGs have a low amino-acid identity (≤64.47%) compared to existing GMC family oxidoreductases, expanding on the diversity of this family of enzymes. The MAGs meet nearly all the minimum requirements but lack a 16S rRNA gene of sufficient length required for the proposed novel genus and species under SeqCode. Nevertheless, phylogenetic trees based on core-genome and RpoB as an alternative phylogenetic marker are congruent with the taxon standing as a monophyletic clade to other taxa of the order Cellvibrionales. Taken together, the MAGs (SJ0813 and SJ0972) represent an uncultured, undescribed genus and species in which we tentatively propose the name Candidatus Pelagadaptatus aseana gen. nov., sp. nov. and strain SJ0813TS (=BAABNI000000000.1TS) as type sequence. Phylogenetic inference from core-genome and RpoB phylogenetic trees placed Umboniibacter marinipuniceus KMM 3891T outside Cellvibrionaceae. We, therefore, propose the transfer of the genus Umboniibacter from the family Cellvibrionaceae to a new family Umboniibacteraceae according to the International Code of Nomenclature of Prokaryotes.
Collapse
Affiliation(s)
- Jia Yee Ho
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System and National University Hospital System, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore, Singapore
| | - Xiu Qi Koh
- Centre for Translational Medicine, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Deborah Yebon Kang
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore, Singapore
| | - Adrian Low
- Centre for Translational Medicine, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dalong Hu
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System and National University Hospital System, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore, Singapore
| | - Mindia A. S. Haryono
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore, Singapore
| | - Rohan B. H. Williams
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore, Singapore
| | - Rebecca J. Case
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yann Felix Boucher
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System and National University Hospital System, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore, Singapore
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore and National University Hospital System, Singapore, Singapore
| |
Collapse
|
3
|
Seymour JR, McLellan SL. Climate change will amplify the impacts of harmful microorganisms in aquatic ecosystems. Nat Microbiol 2025; 10:615-626. [PMID: 40021939 DOI: 10.1038/s41564-025-01948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/18/2024] [Indexed: 03/03/2025]
Abstract
More than 70% of the human population lives within five kilometres of a natural water feature. These aquatic ecosystems are heavily used for resource provision and recreation, and represent the interface between human populations and aquatic microbiomes, which can sometimes negatively impact human health. Diverse species of endemic aquatic microorganisms, including toxic microalgae and pathogenic bacteria, can be harmful to humans. Aquatic ecosystems are also subject to intrusions of allochthonous pathogenic microorganisms through pollution and runoff. Notably, environmental processes that amplify the abundance and impact of harmful aquatic microorganisms are occurring with increasing frequency owing to climate change. For instance, increases in water temperature stimulate outbreaks of pathogenic and toxic species, whereas more intense precipitation events escalate microbial contamination from stormwater discharge. In this Perspective we discuss the influence of aquatic microbiomes on the health and economies of human populations and examine how climate change is increasing these impacts.
Collapse
Affiliation(s)
- Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Broadway, New South Wales, Australia.
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
4
|
Urrea V, Páez-Triana L, Velásquez-Ortiz N, Camargo M, Patiño LH, Vega L, Ballesteros N, Hidalgo-Troya A, Galeano LA, Ramírez JD, Muñoz M. Metagenomic Analysis of Surface Waters and Wastewater in the Colombian Andean Highlands: Implications for Health and Disease. Curr Microbiol 2025; 82:162. [PMID: 40021498 PMCID: PMC11870934 DOI: 10.1007/s00284-024-04019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/02/2024] [Indexed: 03/03/2025]
Abstract
Urban water bodies serve as critical reservoirs of microbial diversity, with major implications for public health and environmental quality. This study aimed to characterize the microbial diversity of surface waters and wastewater from the Pasto River in the Colombian Andean Highlands, offering insights that may support water quality monitoring efforts. Sampling was conducted at three river sites and one wastewater location. Standard physicochemical and microbiological analyses were performed, including real-time PCR to detect protozoan pathogens Giardia spp. and Cryptosporidium spp. Metagenomic sequencing provided an in-depth taxonomic and functional profile of microbial communities through two complementary approaches: (i) read-based analysis to identify abundant families and species, both pathogenic and beneficial, and (ii) detection of health-related molecular markers, including antimicrobial resistance markers and virulence factors. Physicochemical analyses showed distinct profiles between wastewater and surface water, with wastewater exhibiting elevated levels of suspended solids (113.6 mg/L), biochemical oxygen demand (BOD, 311.2 mg/L), and chemical oxygen demand (COD, 426.7 mg/L). Real-time PCR detected Giardia spp. DNA in 75% (76/102) of the samples and Cryptosporidium spp. DNA in 94% (96/102) of samples. The metagenomic read-based profiling identified Aeromonas media as a prevalent pathogen and Polaromonas naphthalenivorans as a potential biodegradative agent. The metagenomic assembly produced 270 high-quality genomes, revealing 16 bacterial species (e. g., Acinetobacter johnsonii and Megamonas funiformis) that provided insights into fecal contaminants and native aquatic microbes. Functional profiling further revealed a high prevalence of antimicrobial resistance markers, particularly for tetracyclines, aminoglycosides, and macrolides, with the highest abundance found in wastewater samples. Additionally, virulence factors were notably present in Zoogloea ramigera. The findings underscore the value of metagenomic profiling as a comprehensive tool for water quality monitoring, facilitating the detection of pathogens, beneficial species, and molecular markers indicative of potential health risks. This approach supports continuous monitoring efforts, offering actionable data for water management strategies to safeguard public health and maintain ecological integrity.
Collapse
Affiliation(s)
- Vanessa Urrea
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Natalia Velásquez-Ortiz
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Milena Camargo
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, 250027, Funza, Cundinamarca, Colombia
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Laura Vega
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Arsenio Hidalgo-Troya
- Grupo de Investigación Salud Pública, Departamento de Matemáticas y Estadística, Universidad de Nariño, 520002, Pasto, Colombia
| | - Luis-Alejandro Galeano
- Grupo de Investigación en Materiales Funcionales y Catálisis (GIMFC), Departamento de Química, Universidad de Nariño, 520002, Pasto, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia.
- Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, 111321, Bogotá, Colombia.
| |
Collapse
|
5
|
Lee J, Song SH, Moon K, Lee N, Ryu S, Song HS, Lee SM, Kim YJ, Chun SW, Choi KM, Lee AH. Thalassotalea aquiviva sp. nov., and Thalassotalea maritima sp. nov., Isolated from Seawater of the Coast in South Korea. J Microbiol 2024; 62:1099-1111. [PMID: 39656424 DOI: 10.1007/s12275-024-00191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
Two novel bacterial strains, 273M-4T and Sam97T, were isolated from seawater in the Yellow Sea, Muan-gun, South Korea, and identified as members of the genus Thalassotalea. Both strains were Gram-stain-negative, aerobic, rod-shaped, non-motile, non-flagellated, and oxidase- and catalase-positive. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains 273M-4T and Sam97T were most closely related to Thalassotalea ponticola KCTC 42155T, with sequence similarities of 97.5% and 98.3%, respectively. Optimal growth for strain 273M-4T occurred at 25-30 °C, pH 7.0, and 2% NaCl, while strain Sam97T grew optimally at 30 °C, pH 8.0, and 2% NaCl. Genome sizes of strains 273M-4T and Sam97T were 3.37 and 3.31 Mb, with DNA G + C contents of 41.0 mol% and 42.9 mol%, respectively. The orthologous average nucleotide identity (OrthoANI) and digital DNA-DNA hybridization (dDDH) values between the two strains were 71.6% and 24.4%, respectively, indicating that they are distinct species. Further genomic analyses of these two strains revealed OrthoANI values of < 73.5% and dDDH values of < 26.7% within the genus Thalassotalea, suggesting their distinctiveness from other Thalassotalea species. The predominate fatty acids of strains 273M-4T and Sam97T were summed feature 3 (consisting of C16:1 ω7c/C16:1 ω6c) and C16:0. All strains contained phosphatidylethanolamine and phosphatidylglycerol as the major polar lipids and ubiquinone-8 (Q-8) as the primary respiratory quinone. Based on phenotypic, phylogenetic, genotypic, and chemotaxonomic data, strains 273M-4T (= KCTC 8644T = LMG 33695T) and Sam97T (= KCTC 8645T = LMG 33694T) represent novel species of the genus Thalassotalea, named Thalassotalea aquiviva sp. nov. and Thalassotalea maritima sp. nov..
Collapse
Affiliation(s)
- Jina Lee
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Seung-Hui Song
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Kira Moon
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Nakyeong Lee
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Sangdon Ryu
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Hye Seon Song
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Sung Moon Lee
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Yun Ji Kim
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Se Won Chun
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Kyung-Min Choi
- Department of Integrative Bioresources, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Aslan Hwanhwi Lee
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea.
| |
Collapse
|
6
|
Oh HM, Lee JH, Choi A, Yang SH, Shin GH, Kang SG, Cho JC, Kim HJ, Kwon KK. Effect of Light Regime on Candidatus Puniceispirillum marinum IMCC1322 in Nutrient-Replete Conditions. J Microbiol Biotechnol 2024; 35:e2410034. [PMID: 39809517 PMCID: PMC11813361 DOI: 10.4014/jmb.2410.10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025]
Abstract
Previous studies showed no improvement in bacterial biomass for Candidatus Puniceispirillum marinum IMCC1322 under light regimes. Nevertheless, in nutrient-replete cultures with higher inoculating cell densities, strain IMCC1322 exhibited proteorhodopsin photoheterotrophy. Increasing both inoculum size and the amino acid pool can eliminate quorum sensing and starvation responses in strain IMCC1322. Light regimes affected IMCC1322 cultures in stationary/death phases, where cellular ATP levels ranged from 0.0331 to 1.74 mM, with ATP/cell ranging from 13.9 to 367 zeptomoles. In nutrient-depleted conditions, strain IMCC1322 may suffer from excessive protons generated by proteorhodopsin under light conditions. IMCC1322 may tolerate excessive periplasmic protons through ATP-dependent proton pumping and protonation of augmented amino acids. Meanwhile, acid stress could also be mitigated by refining membrane permeability through unsaturation and cyclopropanation of phospholipids. Oceanic bacteria such as IMCC1322 and SAR11 preferred anaplerotic TCA cycles over glycolysis and rely on the Entner-Doudoroff (ED) pathway for growth. Although ATP generation is less efficient in the ED pathway, it offers advantages during rapid growth owing to its strong thermodynamic driving force. The metabolism of IMCC1322 favors gluconeogenesis over glycolysis, aligning with the metabolism of SAR11 reported in previous studies. However, the additional light-driven, PR-dependent ATP synthesis in IMCC1322 is expected to be insufficient to support protein turnover after the log phase, as well as in nutrient-limited conditions. Stable isotope measurements showed no significant differences in the inorganic carbon assimilation between constant light and constant dark cultures in late log phase.
Collapse
Affiliation(s)
- Hyun-Myung Oh
- Institute of Liberal Arts Education, Pukyong National University, Busan 48547, Republic of Korea
| | - Ji Hyen Lee
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul 07804, Republic of Korea
| | - Ahyoung Choi
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Sung-Hyun Yang
- Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | | | - Sung Gyun Kang
- Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Jang-Cheon Cho
- Division of Biology and Ocean Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Hak Jun Kim
- Department of Chemistry, Pukyong National University, Busan 48547, Republic of Korea
| | | |
Collapse
|
7
|
Ramljak A, Žučko J, Lučić M, Babić I, Morić Z, Fafanđel M, Furdek Turk M, Matijević S, Karpouzas D, Udiković-Kolić N, Petrić I. Microbial communities as indicators of marine ecosystem health: Insights from coastal sediments in the eastern Adriatic Sea. MARINE POLLUTION BULLETIN 2024; 205:116649. [PMID: 38944966 DOI: 10.1016/j.marpolbul.2024.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
Considering the adaptability and responsiveness of microorganisms to environmental changes, their indicator potential is still not acknowledged in European directives. This comprehensive study examined the changes of microbial communities in sediments and a range of geochemical parameters from pristine and anthropogenically impacted coastal areas in the eastern Adriatic Sea. Various analytical methods found evidence of sediment contamination (high toxicity level, enrichments of metals, tributyltin) in certain areas, leading to the categorization of sediments based on the level of anthropogenic disturbance. Prokaryotes were identified as the most promising group of microbes for further research, with specific bacterial families (Rhodobacteraceae, Ectothiorhodospiraceae, Cyclobacteriaceae) and genera (Boseongicola, B2M28, Subgroup 23, Sva0485, Thiogranum) proposed as potential indicators of environmental status. Finally, predictive models were developed to identify key indicator variables for assessing anthropogenic impact in sediments. This research represents an essential step toward incorporating microbial communities into assessments of benthic environmental health.
Collapse
Affiliation(s)
- A Ramljak
- Division for Marine and Environmental Research, Ruder Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - J Žučko
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - M Lučić
- Division for Marine and Environmental Research, Ruder Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - I Babić
- Division for Marine and Environmental Research, Ruder Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Z Morić
- Department of Computer Science, Algebra University, Gradišćanska 24, 10000 Zagreb, Croatia
| | - M Fafanđel
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - M Furdek Turk
- Division for Marine and Environmental Research, Ruder Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - S Matijević
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia
| | - D Karpouzas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41221 Larissa, Greece
| | - N Udiković-Kolić
- Division for Marine and Environmental Research, Ruder Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - I Petrić
- Division for Marine and Environmental Research, Ruder Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
8
|
Banchi E, Corre E, Del Negro P, Celussi M, Malfatti F. Genome-resolved metagenomics of Venice Lagoon surface sediment bacteria reveals high biosynthetic potential and metabolic plasticity as successful strategies in an impacted environment. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:126-142. [PMID: 38433960 PMCID: PMC10902248 DOI: 10.1007/s42995-023-00192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/05/2023] [Indexed: 03/05/2024]
Abstract
Bacteria living in sediments play essential roles in marine ecosystems and deeper insights into the ecology and biogeochemistry of these largely unexplored organisms can be obtained from 'omics' approaches. Here, we characterized metagenome-assembled-genomes (MAGs) from the surface sediment microbes of the Venice Lagoon (northern Adriatic Sea) in distinct sub-basins exposed to various natural and anthropogenic pressures. MAGs were explored for biodiversity, major marine metabolic processes, anthropogenic activity-related functions, adaptations at the microscale, and biosynthetic gene clusters. Starting from 126 MAGs, a non-redundant dataset of 58 was compiled, the majority of which (35) belonged to (Alpha- and Gamma-) Proteobacteria. Within the broad microbial metabolic repertoire (including C, N, and S metabolisms) the potential to live without oxygen emerged as one of the most important features. Mixotrophy was also found as a successful lifestyle. Cluster analysis showed that different MAGs encoded the same metabolic patterns (e.g., C fixation, sulfate oxidation) thus suggesting metabolic redundancy. Antibiotic and toxic compounds resistance genes were coupled, a condition that could promote the spreading of these genetic traits. MAGs showed a high biosynthetic potential related to antimicrobial and biotechnological classes and to organism defense and interactions as well as adaptive strategies for micronutrient uptake and cellular detoxification. Our results highlighted that bacteria living in an impacted environment, such as the surface sediments of the Venice Lagoon, may benefit from metabolic plasticity as well as from the synthesis of a wide array of secondary metabolites, promoting ecosystem resilience and stability toward environmental pressures. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00192-z.
Collapse
Affiliation(s)
- Elisa Banchi
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Erwan Corre
- FR2424, Station Biologique de Roscoff, Plateforme ABiMS (Analysis and Bioinformatics for Marine Science), Sorbonne Université CNRS, 29680 Roscoff, France
| | - Paola Del Negro
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Mauro Celussi
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Francesca Malfatti
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|