1
|
Cheng Z, Yang L, Chu H. The role of gut microbiota, exosomes, and their interaction in the pathogenesis of ALD. J Adv Res 2025; 72:353-367. [PMID: 38969094 DOI: 10.1016/j.jare.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND The liver disorders caused by alcohol abuse are termed alcoholic-related liver disease (ALD), including alcoholic steatosis, alcoholic steatohepatitis, alcoholic hepatitis, and alcoholic cirrhosis, posing a significant threat to human health. Currently, ALD pathogenesis has not been completely clarified, which is likely to be related to the direct damage caused by alcohol and its metabolic products, oxidative stress, gut dysbiosis, and exosomes. AIMS The existing studies suggest that both the gut microbiota and exosomes contribute to the development of ALD. Moreover, there exists an interaction between the gut microbiota and exosomes. We discuss whether this interaction plays a role in the pathogenesis of ALD and whether it can be a potential therapeutic target for ALD treatment. KEY SCIENTIFIC CONCEPTS OF REVIEW Chronic alcohol intake alters the diversity and composition of gut microbiota, which greatly contributes to ALD's progression. Some approaches targeting the gut microbiota, including probiotics, fecal microbiota transplantation, and phage therapy, have been confirmed to effectively ameliorate ALD in many animal experiments and/or several clinical trials. In ALD, the levels of exosomes and the expression profile of microRNA have also changed, which affects the pathogenesis of ALD. Moreover, there is an interplay between exosomes and the gut microbiota, which also putatively acts as a pathogenic factor of ALD.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
2
|
Wang J, Wang X, Zhuo E, Chen B, Chan S. Gut‑liver axis in liver disease: From basic science to clinical treatment (Review). Mol Med Rep 2025; 31:10. [PMID: 39450549 PMCID: PMC11541166 DOI: 10.3892/mmr.2024.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/14/2024] [Indexed: 10/26/2024] Open
Abstract
Incidence of a number of liver diseases has increased. Gut microbiota serves a role in the pathogenesis of hepatitis, cirrhosis and liver cancer. Gut microbiota is considered 'a new virtual metabolic organ'. The interaction between the gut microbiota and liver is termed the gut‑liver axis. The gut‑liver axis provides a novel research direction for mechanism of liver disease development. The present review discusses the role of the gut‑liver axis and how this can be targeted by novel treatments for common liver diseases.
Collapse
Affiliation(s)
- Jianpeng Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of Clinical Medicine, The First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Enba Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shixin Chan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
3
|
Kim H, Song EJ, Choi E, Kwon KW, Park JH, Shin SJ. Adjunctive administration of parabiotic Lactobacillus sakei CVL-001 ameliorates drug-induced toxicity and pulmonary inflammation during antibiotic treatment for tuberculosis. Int Immunopharmacol 2024; 132:111937. [PMID: 38569427 DOI: 10.1016/j.intimp.2024.111937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Tuberculosis (TB) treatment requires a long therapeutic duration and induces adverse effects such as hepatotoxicity, causing discontinuation of treatment. Reduced adherence to TB medications elevates the risk of recurrence and the development of drug resistance. Additionally, severe cavitary TB with a high burden of Mycobacterium tuberculosis (Mtb) and inflammation-mediated tissue damage may need an extended treatment duration, resulting in a higher tendency of drug-induced toxicity. We previously reported that the administration of Lactobacillus sakei CVL-001 (L. sakei CVL-001) regulates inflammation and improves mucosal barrier function in a murine colitis model. Since accumulating evidence has reported the functional roles of probiotics in drug-induced liver injury and pulmonary inflammation, we employed a parabiotic form of the L. sakei CVL-001 to investigate whether this supplement may provide beneficial effects on the reduction in drug-induced liver damage and pulmonary inflammation during chemotherapy. Intriguingly, L. sakei CVL-001 administration slightly reduced Mtb burden without affecting lung inflammation and weight loss in both Mtb-resistant and -susceptible mice. Moreover, L. sakei CVL-001 decreased T cell-mediated inflammatory responses and increased regulatory T cells along with an elevated antigen-specific IL-10 production, suggesting that this parabiotic may restrain excessive inflammation during antibiotic treatment. Furthermore, the parabiotic intervention significantly reduced levels of alanine aminotransferase, an indicator of hepatotoxicity, and cell death in liver tissues. Collectively, our data suggest that L. sakei CVL-001 administration has the potential to be an adjunctive therapy by reducing pulmonary inflammation and liver damage during anti-TB drug treatment and may benefit adherence to TB medication in lengthy treatment.
Collapse
Affiliation(s)
- Hagyu Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun-Jung Song
- Nodcure, Inc., 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Jong-Hwan Park
- Nodcure, Inc., 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea; Laboratory Animal Medicine, Animal Medical Institute, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea.
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Zhang W, Cheng W, Li J, Huang Z, Lin H, Zhang W. New aspects characterizing non-obese NAFLD by the analysis of the intestinal flora and metabolites using a mouse model. mSystems 2024; 9:e0102723. [PMID: 38421203 PMCID: PMC10949483 DOI: 10.1128/msystems.01027-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major public health problem due to the high incidence affecting approximately one-third of the world's population. NAFLD is usually linked to obesity and excessive weight. A subset of patients with NAFLD expresses normal or low body mass index; thus, the condition is called non-obese NAFLD or lean NAFLD. However, patients and healthcare professionals have little awareness and understanding of NAFLD in non-obese individuals. Furthermore, preclinical results from non-obese animal models with NAFLD are unclear. Gut microbiota and their metabolites in non-obese/lean-NAFLD patients differ from those in obese NAFLD patients. Therefore, we analyzed the biochemical indices, intestinal flora, and intestinal metabolites in a non-obese NAFLD mouse model established using a methionine-choline-deficient (MCD) diet. The significantly lean MCD mice had a remarkable fatty liver with lower serum triglyceride and free fatty acid levels, as well as higher alanine transaminase and aspartate transaminase levels than normal mice. 16S RNA sequencing of fecal DNA showed that the overall richness and diversity of the intestinal flora decreased in MCD mice, whereas the Firmicutes:Bacteroidota ratio was increased. g_Tuzzerella, s_Bifidobacterium pseudolongum, and s_Faecalibaculum rodentium were the predominant species in non-obese NAFLD mice. Fecal metabolomics using liquid chromatography-tandem mass spectrometry revealed the potential biomarkers for the prognosis and diagnosis of non-obese NAFLD, including high levels of tyramine glucuronide, 9,12,13-TriHOME, and pantetheine 4'-phosphate, and low levels of 3-carbamoyl-2-phenylpropionaldehyde, N-succinyl-L,L-2,6-diaminopimelate, 4-methyl-5-thiazoleethanol, homogentisic acid, and estriol. Our findings could be useful to identify and develop drugs to treat non-obese NAFLD and lean NAFLD. IMPORTANCE Patients and healthcare professionals have little awareness and understanding of NAFLD in non-obese individuals. In fact, about 40% of people with NAFLD worldwide are non-obese, and nearly one-fifth are lean. Lean NAFLD unfortunately may be unnoticed for years and remains undetected until hepatic damage is advanced and the prognosis is compromised. This study focused on the lean NAFLD, screened therapeutic agents, and biomarkers for the prognosis and diagnosis using MCD-induced male C57BL/6J mice. The metabolites tyramine glucuronide, 9,12,13-TriHOME, and pantetheine 4'-phosphate, together with the predominant flora including g_Tuzzerella, s_Bifidobacterium pseudolongum, and s_Faecalibaculum rodentium, were specific in non-obese NAFLD mice and might be used as targets for non-obese NAFLD drug exploration. This study is particularly significant for non-obese NAFLDs that need to be more actively noticed and vigilant.
Collapse
Affiliation(s)
- Wenji Zhang
- Guangdong Provincial Engineering and Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wenli Cheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - JingHui Li
- Ningbo Psychiatric Hospital, Ningbo, China
| | - Zhenrui Huang
- Guangdong Provincial Engineering and Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Li O, Xu H, Kim D, Yang F, Bao Z. Roles of Human Gut Microbiota in Liver Cirrhosis Risk: A Two-Sample Mendelian Randomization Study. J Nutr 2024; 154:143-151. [PMID: 37984746 DOI: 10.1016/j.tjnut.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Accumulating evidence suggests that alterations in gut microbiota composition and diversity are associated with liver cirrhosis. But whether gut microbiota promotes or hampers the genesis and development of liver cirrhosis remains vague. OBJECTIVES This study aimed to establish a causal relationship between gut microbiota and the development of liver fibrosis and cirrhosis. To achieve this, we employed a 2-sample Mendelian randomization (MR) analysis utilizing genome-wide association study (GWAS) summary statistics. This approach enabled us to assess the potential impact of gut microbiota on liver cirrhosis. METHODS The independent genetic instruments of gut microbiota were obtained from the MiBioGen (up to 18,340 participants), which is a large-scale genome-wide genotype and 16S fecal microbiome dataset. Cirrhosis data were derived from the FinnGen biobank analysis, which included 214,403 individuals of European ancestry (811 patients and 213,592 controls). To assess the causal relationship between gut microbiota and cirrhosis, we applied 4 different methods of MR analysis: the inverse-variance weighted method (IVW), the MR-Egger regression, the weighted median analysis (WME), and the weighted mode. Furthermore, sensitivity analyses were conducted to evaluate heterogeneity and horizontal pleiotropy. RESULTS Results of MR analyses provided evidence of a causal association between 4 microbiota features and cirrhosis, including 2 family [Lachnosiraceae: odds ratio (OR): 1.82626178; 95% confidence interval (CI): 1.05208209, 3.17012532; P = 0.0323194; Lactobacillaceae : OR: 0.62897502; 95% CI: 0.42513162, 0.93055788; P = 0.02033345] and 2 genus [Butyricicoccus: OR: 0.41432215; 95% CI: 0.22716865, 0.75566257; P = 0.0040564; Lactobacillus: OR: 0.6663767; 95% CI: 0.45679511, 0.97211616; P = 0.03513627]. CONCLUSIONS Our findings offered compelling evidence of a causal association between gut microbiota and cirrhosis in European population and identified specific bacteria taxa that may regulate the genesis and progression of liver fibrosis and cirrhosis, may offer a new direction for the treatment of cirrhosis.
Collapse
Affiliation(s)
- Ouyang Li
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Han Xu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Dayoung Kim
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Fan Yang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| | - Zhijun Bao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Shu X, Wang J, Zhao L, Wang J, Wang P, Zhang F, Wang R. Bifidobacterium lactis TY-S01 protects against alcoholic liver injury in mice by regulating intestinal barrier function and gut microbiota. Heliyon 2023; 9:e17878. [PMID: 37539263 PMCID: PMC10395298 DOI: 10.1016/j.heliyon.2023.e17878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023] Open
Abstract
Alcohol-induced liver injury poses a significant threat to human health. Probiotics have been proven to prevent and treat alcohol-induced liver injury. In this study, the preventive effect of Bifidobacterium lactis TY-S01 on alcohol-induced liver injury in mice was investigated. TY-S01 pretreatment effectively protected mice against alcohol-induced liver injury by preserving the levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, triglyceride and high-density lipoprotein-cholesterol in serum and maintaining the levels of the inflammatory cytokines tumor necrosis factor-α, interleukin-6 and interleukin-1β in liver tissue. Additionally, TY-S01 could maintain the endotoxin levels in serum, maintain the mRNA expression levels of zonula occluden-1, occludin, claudin-1 and claudin-3 in the gut, and prevent gut microbiota dysbiosis in mice with alcoholic liver injury. Spearman's correlation analysis revealed that there was a clear correlation among serum indicators, inflammatory cytokines and gut microbiota. In conclusion, TY-S01 attenuates alcohol-induced liver injury by protecting the integrity of the intestinal barrier and maintaining the balance of the gut microbiota.
Collapse
Affiliation(s)
- Xi Shu
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Jing Wang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Liang Zhao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Jian Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Pengjie Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Feng Zhang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| |
Collapse
|
7
|
Shu X, Wang J, Zhao L, Wang J, Wang P, Zhang F, Wang R. Bifidobacterium lactis TY-S01 protects against alcoholic liver injury in mice by regulating intestinal barrier function and gut microbiota. Heliyon 2023; 9:e17878. [PMID: 37539263 DOI: 10.1016/j.heliyon.2023.e17878if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2024] Open
Abstract
Alcohol-induced liver injury poses a significant threat to human health. Probiotics have been proven to prevent and treat alcohol-induced liver injury. In this study, the preventive effect of Bifidobacterium lactis TY-S01 on alcohol-induced liver injury in mice was investigated. TY-S01 pretreatment effectively protected mice against alcohol-induced liver injury by preserving the levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, triglyceride and high-density lipoprotein-cholesterol in serum and maintaining the levels of the inflammatory cytokines tumor necrosis factor-α, interleukin-6 and interleukin-1β in liver tissue. Additionally, TY-S01 could maintain the endotoxin levels in serum, maintain the mRNA expression levels of zonula occluden-1, occludin, claudin-1 and claudin-3 in the gut, and prevent gut microbiota dysbiosis in mice with alcoholic liver injury. Spearman's correlation analysis revealed that there was a clear correlation among serum indicators, inflammatory cytokines and gut microbiota. In conclusion, TY-S01 attenuates alcohol-induced liver injury by protecting the integrity of the intestinal barrier and maintaining the balance of the gut microbiota.
Collapse
Affiliation(s)
- Xi Shu
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Jing Wang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Liang Zhao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Jian Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Pengjie Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Feng Zhang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| |
Collapse
|
8
|
Chen L, Yang P, Hu L, Yang L, Chu H, Hou X. Modulating phenylalanine metabolism by L. acidophilus alleviates alcohol-related liver disease through enhancing intestinal barrier function. Cell Biosci 2023; 13:24. [PMID: 36739426 PMCID: PMC9899391 DOI: 10.1186/s13578-023-00974-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/27/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Impaired metabolic functions of gut microbiota have been demonstrated in alcohol-related liver disease (ALD), but little is known about changes in phenylalanine metabolism. METHODS Bacterial genomics and fecal metabolomics analysis were used to recognize the changes of phenylalanine metabolism and its relationship with intestinal flora. Intestinal barrier function was detected by intestinal alkaline phosphatase (IAP) activity, levels of tight junction protein expression, colonic inflammation and levels of serum LPS. Lactobacillus acidophilus was chosen to correct phenylalanine metabolism of ALD mice by redundancy analysis and Pearson correlation analysis. RESULTS Using 16S rRNA sequencing and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods, we identified elevated levels of phenylalanine and its' metabolites in the gut of alcohol-fed mice compared to control mice and were negatively correlated with the abundance of Lactobacillus, which mainly metabolized phenylalanine. The intestinal phenylalanine level was positively correlated with the colon inflammatory factors TNF-α and IL-6, and negatively correlated with ZO-1 and Occludin. While intestinal alkaline phosphatase (IAP) activity was negatively correlated with the colon inflammatory factors TNF-α, IL-6 and MCP-1, and positively correlated with ZO-1 and Occludin. Increased phenylalanine inhibited IAP activity, blocked LPS dephosphorylation, increased colonic inflammation and bacterial translocation. Phenylalanine supplementation aggravated alcohol-induced liver injury and intestinal barrier dysfunction. Among the 37 Lactobacillus species, the abundance of Lactobacillus acidophilus was most significantly decreased in ALD mice. Supplementation with L. acidophilus recovered phenylalanine metabolism and protected mice from alcohol-induced steatohepatitis. CONCLUSIONS Recovery of phenylalanine metabolism through the oral supplementation of L. acidophilus boosted intestinal barrier integrity and ameliorated experimental ALD.
Collapse
Affiliation(s)
- Liuying Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Pengcheng Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Lilin Hu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
9
|
Chen Z, Ding C, Gu Y, He Y, Chen B, Zheng S, Li Q. Association between gut microbiota and hepatocellular carcinoma from 2011 to 2022: Bibliometric analysis and global trends. Front Oncol 2023; 13:1120515. [PMID: 37064156 PMCID: PMC10098157 DOI: 10.3389/fonc.2023.1120515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a primary malignant tumor responsible for approximately 90% of all liver cancers in humans, making it one of the leading public health problems worldwide. The gut microbiota is a complex microbial ecosystem that can influence tumor formation, metastasis, and resistance to treatment. Therefore, understanding the potential mechanisms of gut microbiota pathogenesis is critical for the prevention and treatment of HCC. Materials and methods A search was conducted in the Web of Science Core Collection (WoSCC) database for English literature studies on the relationship between gut microbiota and HCC from 2011 to 2022. Bibliometric analysis tools such as VOSviewer, CiteSpace, and R Studio were used to analyze global trends and research hotspots in this field. Results A total of 739 eligible publications, comprising of 383 articles and 356 reviews, were analyzed. Over the past 11 years, there has been a rapid increase in the annual number of publications and average citation levels, especially in the last five years. The majority of published articles on this topic originated from China (n=257, 34.78%), followed by the United States of America (n=203, 27.47%), and Italy (n=85, 11.50%). American scholars demonstrated high productivity, prominence, and academic environment influence in the research of this subject. Furthermore, the University of California, San Diego published the most papers (n=24) and had the highest average citation value (value=152.17) in the study of the relationship between gut microbiota and HCC. Schnabl B from the USA and Ohtani N from Japan were the authors with the highest number of publications and average citation value, respectively. Conclusion In recent years, research on the gut microbiota's role in HCC has made rapid progress. Through a review of published literature, it has been found that the gut microbiota is crucial in the pathogenesis of HCC and in oncotherapy.
Collapse
Affiliation(s)
- Zhitao Chen
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Chenchen Ding
- Affiliated Mental Health Centre & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangjun Gu
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Yahui He
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
- School of Medicine, Zhejiang Chinese Medical University, Zhejiang Shuren College, Hangzhou, China
| | - Bing Chen
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
- School of Medicine, Zhejiang Chinese Medical University, Zhejiang Shuren College, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
- *Correspondence: Qiyong Li, ; Shusen Zheng,
| | - Qiyong Li
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- *Correspondence: Qiyong Li, ; Shusen Zheng,
| |
Collapse
|