1
|
Larson J, Tokmina-Lukaszewska M, Payne D, Spietz RL, Fausset H, Alam MG, Brekke BK, Pauley J, Hasenoehrl EJ, Shepard EM, Boyd ES, Bothner B. Impact of mineral and non-mineral sources of iron and sulfur on the metalloproteome of Methanosarcina barkeri. Appl Environ Microbiol 2024; 90:e0051624. [PMID: 39023267 PMCID: PMC11337800 DOI: 10.1128/aem.00516-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Methanogens often inhabit sulfidic environments that favor the precipitation of transition metals such as iron (Fe) as metal sulfides, including mackinawite (FeS) and pyrite (FeS2). These metal sulfides have historically been considered biologically unavailable. Nonetheless, methanogens are commonly cultivated with sulfide (HS-) as a sulfur source, a condition that would be expected to favor metal precipitation and thus limit metal availability. Recent studies have shown that methanogens can access Fe and sulfur (S) from FeS and FeS2 to sustain growth. As such, medium supplied with FeS2 should lead to higher availability of transition metals when compared to medium supplied with HS-. Here, we examined how transition metal availability under sulfidic (i.e., cells provided with HS- as sole S source) versus non-sulfidic (cells provided with FeS2 as sole S source) conditions impact the metalloproteome of Methanosarcina barkeri Fusaro. To achieve this, we employed size exclusion chromatography coupled with inductively coupled plasma mass spectrometry and shotgun proteomics. Significant changes were observed in the composition and abundance of iron, cobalt, nickel, zinc, and molybdenum proteins. Among the differences were alterations in the stoichiometry and abundance of multisubunit protein complexes involved in methanogenesis and electron transport chains. Our data suggest that M. barkeri utilizes the minimal iron-sulfur cluster complex and canonical cysteine biosynthesis proteins when grown on FeS2 but uses the canonical Suf pathway in conjunction with the tRNA-Sep cysteine pathway for iron-sulfur cluster and cysteine biosynthesis under sulfidic growth conditions.IMPORTANCEProteins that catalyze biochemical reactions often require transition metals that can have a high affinity for sulfur, another required element for life. Thus, the availability of metals and sulfur are intertwined and can have large impacts on an organismismal biochemistry. Methanogens often occupy anoxic, sulfide-rich (euxinic) environments that favor the precipitation of transition metals as metal sulfides, thereby creating presumed metal limitation. Recently, several methanogens have been shown to acquire iron and sulfur from pyrite, an abundant iron-sulfide mineral that was traditionally considered to be unavailable to biology. The work presented here provides new insights into the distribution of metalloproteins, and metal uptake of Methanosarcina barkeri Fusaro grown under euxinic or pyritic growth conditions. Thorough characterizations of this methanogen under different metal and sulfur conditions increase our understanding of the influence of metal availability on methanogens, and presumably other anaerobes, that inhabit euxinic environments.
Collapse
Affiliation(s)
- James Larson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | | | - Devon Payne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Rachel L. Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Hunter Fausset
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Md Gahangir Alam
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Brooklyn K. Brekke
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Jordan Pauley
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Ethan J. Hasenoehrl
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Eric M. Shepard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
2
|
van der Graaf CM, Sánchez-España J, Ilin AM, Yusta I, Stams AJM, Sánchez-Andrea I. Micrometric pyrite catalyzes abiotic sulfidogenesis from elemental sulfur and hydrogen. Sci Rep 2024; 14:17702. [PMID: 39085257 PMCID: PMC11291890 DOI: 10.1038/s41598-024-66006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Hydrogen sulfide (H2S) in environments with temperatures below 100 °C is generally assumed to be of microbial origin, while abiotic H2S production is typically restricted to higher temperatures (T). In this study, we report an abiotic process for sulfidogenesis through the reduction of elemental sulfur (S0) by hydrogen (H2), mediated by pyrite (FeS2). The process was investigated in detail at pH 4 and 80 °C, but experimental conditions ranged between 40 and 80 °C and pH 4-6. The experiments were conducted with H2 as reducing molecule, and µm-sized spherical (but not framboidal) pyrite particles that formed in situ from the H2S, S0 and Fe2+ present in the experiments. Fe monosulfides, likely mackinawite, were identified as potential pyrite precursors. The absence of H2 production in controls, combined with geochemical modelling, suggests that pyrite formation occurred through the polysulfide pathway, which is unexpected under acidic conditions. Most spherical aggregates of authigenic pyrite were composed of nanometric, acicular crystals oriented in diverse directions, displaying varying degrees of organization. Although it was initially hypothesized that the catalytic properties were related to the surface structure, commercially sourced, milled pyrite particles (< 50 μm) mediated H2S production at comparable rates. This suggests that the catalytic properties of pyrite depend on particle size rather than surface structure, requiring pyrite surfaces to act as electron shuttles between S0 and H2.
Collapse
Affiliation(s)
- Charlotte M van der Graaf
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
- Faculty of Civil Engineering and Geoscience, Department of Geoscience and Engineering, Delft University of Technology, Stevinweg 1, 2628CN, Delft, The Netherlands.
| | - Javier Sánchez-España
- Planetary Geology Research Group, Department of Planetology and Habitability, Centro de Astrobiología (CAB, CSIC-INTA), 28850, Torrejón de Ardoz, Madrid, Spain.
| | - Andrey M Ilin
- Department of Geology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080, Bilbao, Spain
| | - Iñaki Yusta
- Department of Geology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080, Bilbao, Spain
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
- Department of Environmental Sciences for Sustainability, IE University, C. Cardenal Zúñiga, 12, 40003, Segovia, Spain.
| |
Collapse
|
3
|
Rhim JH, Zhou A, Amenabar MJ, Boyer GM, Elling FJ, Weber Y, Pearson A, Boyd ES, Leavitt WD. Mode of carbon and energy metabolism shifts lipid composition in the thermoacidophile Acidianus. Appl Environ Microbiol 2024; 90:e0136923. [PMID: 38236067 PMCID: PMC10880624 DOI: 10.1128/aem.01369-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
The degree of cyclization, or ring index (RI), in archaeal glycerol dibiphytanyl glycerol tetraether (GDGT) lipids was long thought to reflect homeoviscous adaptation to temperature. However, more recent experiments show that other factors (e.g., pH, growth phase, and energy flux) can also affect membrane composition. The main objective of this study was to investigate the effect of carbon and energy metabolism on membrane cyclization. To do so, we cultivated Acidianus sp. DS80, a metabolically flexible and thermoacidophilic archaeon, on different electron donor, acceptor, and carbon source combinations (S0/Fe3+/CO2, H2/Fe3+/CO2, H2/S0/CO2, or H2/S0/glucose). We show that differences in energy and carbon metabolism can result in over a full unit of change in RI in the thermoacidophile Acidianus sp. DS80. The patterns in RI correlated with the normalized electron transfer rate between the electron donor and acceptor and did not always align with thermodynamic predictions of energy yield. In light of this, we discuss other factors that may affect the kinetics of cellular energy metabolism: electron transfer chain (ETC) efficiency, location of ETC reaction components (cytoplasmic vs. extracellular), and the physical state of electron donors and acceptors (gas vs. solid). Furthermore, the assimilation of a more reduced form of carbon during heterotrophy appears to decrease the demand for reducing equivalents during lipid biosynthesis, resulting in lower RI. Together, these results point to the fundamental role of the cellular energy state in dictating GDGT cyclization, with those cells experiencing greater energy limitation synthesizing more cyclized GDGTs.IMPORTANCESome archaea make unique membrane-spanning lipids with different numbers of five- or six-membered rings in the core structure, which modulate membrane fluidity and permeability. Changes in membrane core lipid composition reflect the fundamental adaptation strategies of archaea in response to stress, but multiple environmental and physiological factors may affect the needs for membrane fluidity and permeability. In this study, we tested how Acidianus sp. DS80 changed its core lipid composition when grown with different electron donor/acceptor pairs. We show that changes in energy and carbon metabolisms significantly affected the relative abundance of rings in the core lipids of DS80. These observations highlight the need to better constrain metabolic parameters, in addition to environmental factors, which may influence changes in membrane physiology in Archaea. Such consideration would be particularly important for studying archaeal lipids from habitats that experience frequent environmental fluctuations and/or where metabolically diverse archaea thrive.
Collapse
Affiliation(s)
- Jeemin H. Rhim
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Alice Zhou
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Maximiliano J. Amenabar
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Grayson M. Boyer
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Felix J. Elling
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
- Leibniz-Laboratory for Radiometric Dating and Isotope Research, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Yuki Weber
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - William D. Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
4
|
Fausset H, Spietz RL, Cox S, Cooper G, Spurzem S, Tokmina-Lukaszewska M, DuBois J, Broderick JB, Shepard EM, Boyd ES, Bothner B. A shift between mineral and nonmineral sources of iron and sulfur causes proteome-wide changes in Methanosarcina barkeri. Microbiol Spectr 2024; 12:e0041823. [PMID: 38179920 PMCID: PMC10846266 DOI: 10.1128/spectrum.00418-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Iron (Fe) and sulfur (S) are required elements for life, and changes in their availability can limit the ecological distribution and function of microorganisms. In anoxic environments, soluble Fe typically exists as ferrous iron [Fe(II)] and S as sulfide (HS-). These species exhibit a strong affinity that ultimately drives the formation of sedimentary pyrite (FeS2). Recently, paradigm-shifting studies indicate that Fe and S in FeS2 can be made bioavailable by methanogens through a reductive dissolution process. However, the impact of the utilization of FeS2, as opposed to canonical Fe and S sources, on the phenotype of cells is not fully understood. Here, shotgun proteomics was utilized to measure changes in the phenotype of Methanosarcina barkeri MS grown with FeS2, Fe(II)/HS-, or Fe(II)/cysteine. Shotgun proteomics tracked 1,019 proteins overall, with 307 observed to change between growth conditions. Functional characterization and pathway analyses revealed these changes to be systemic and largely tangential to Fe/S metabolism. As a final step, the proteomics data were viewed with respect to previously collected transcriptomics data to deepen the analysis. Presented here is evidence that M. barkeri adopts distinct phenotypes to exploit specific sources of Fe and S in its environment. This is supported by observed protein abundance changes across broad categories of cellular biology. DNA adjacent metabolism, central carbon metabolism methanogenesis, metal trafficking, quorum sensing, and porphyrin biosynthesis pathways are all features in the phenotypic differentiation. Differences in trace metal availability attributed to complexation with HS-, either as a component of the growth medium [Fe(II)/HS-] or generated through reduction of FeS2, were likely a major factor underpinning these phenotypic differences.IMPORTANCEThe methanogenic archaeon Methanosarcina barkeri holds great potential for industrial bio-mining and energy generation technologies. Much of the biochemistry of this microbe is poorly understood, and its characterization will provide a glimpse into biological processes that evolved close to life's origin. The discovery of its ability to extract iron and sulfur from bulk, solid-phase minerals shifted a longstanding paradigm that these elements were inaccessible to biological systems. The full elucidation of this process has the potential to help scientists and engineers extract valuable metals from low-grade ore and mine waste generating energy in the form of methane while doing so.
Collapse
Affiliation(s)
- Hunter Fausset
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Rachel L. Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Savannah Cox
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Gwendolyn Cooper
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Scott Spurzem
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | | | - Jennifer DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Joan B. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Eric M. Shepard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
5
|
Kour M, Taborosi A, Boyd ES, Szilagyi RK. Development of molecular cluster models to probe pyrite surface reactivity. J Comput Chem 2023; 44:2486-2500. [PMID: 37650712 DOI: 10.1002/jcc.27213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their biosynthetic demands for these elements prompted the development of atomic-scale nanoparticle models, as maquettes of reactive surface sites, for describing the fundamental redox steps that take place at the mineral surface during reduction. The given report describes our computational approach for modeling n(FeS2 ) nanoparticles originated from mineral bulk structure. These maquettes contain a comprehensive set of coordinatively unsaturated Fe(II) sites that are connected via a range of persulfide (S2 2- ) ligation. In addition to the specific maquettes with n = 8, 18, and 32 FeS2 units, we established guidelines for obtaining low-energy structures by considering the pattern of ionic, covalent, and magnetic interactions among the metal and ligand sites. The developed models serve as computational nano-reactors that can be used to describe the reductive dissolution mechanism of pyrite to better understand the reactive sites on the mineral, where microbial extracellular electron-transfer reactions can occur.
Collapse
Affiliation(s)
- Manjinder Kour
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Attila Taborosi
- Research Initiative for Supra-Materials, Faculty of Engineering, Shinshu University, Nagano, Japan
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Robert K Szilagyi
- Department of Chemistry, The University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
6
|
Spietz RL, Payne D, Boyd ES. Methanogens acquire and bioaccumulate nickel during reductive dissolution of nickelian pyrite. Appl Environ Microbiol 2023; 89:e0099123. [PMID: 37830848 PMCID: PMC10617489 DOI: 10.1128/aem.00991-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 10/14/2023] Open
Abstract
Nickel (Ni) is a key component of the active site metallocofactors of numerous enzymes required for methanogenesis, including [NiFe]-hydrogenase, carbon monoxide dehydrogenase, and methyl CoM reductase, leading to a high demand for Ni among methanogens. However, methanogens often inhabit euxinic environments that favor the sequestration of nickel as metal-sulfide minerals, such as nickelian pyrite [(Ni,Fe)S2], that have low solubilities and that are not considered bioavailable. Recently, however, several different model methanogens (Methanosarcina barkeri, Methanococcus voltae, Methanococcus maripaludis) were shown to reductively dissolve pyrite (FeS2) and to utilize dissolution products to meet iron and sulfur biosynthetic demands. Here, using M. barkeri Fusaro, and laboratory-synthesized (Ni,Fe)S2 that was physically isolated from cells using dialysis membranes, we show that trace nickel (<20 nM) abiotically solubilized from the mineral can support methanogenesis and limited growth, roughly fivefold less than the minimum concentration known to support methanogenesis. Furthermore, when provided direct contact with (Ni,Fe)S2, M. barkeri promoted the reductive dissolution of (Ni,Fe)S2 and assimilated solubilized nickel, iron, and sulfur as its sole source of these elements. Cells that reductively dissolved (Ni,Fe)S2 bioaccumulated approximately fourfold more nickel than those grown with soluble nickel and sulfide but had similar metabolic coupling efficiencies. While the mechanism for Ni uptake in archaeal methanogens is not known, homologs of the bacterial Nik uptake system were shown to be ubiquitous across methanogen genomes. Collectively, these observations indicate that (Ni,Fe)S2 is bioavailable in anoxic environments and that methanogens can convert this mineral into nickel-, iron-, and sulfur-containing metalloenzymes to support methanogenesis and growth. IMPORTANCE Nickel is an essential metal, and its availability has changed dramatically over Earth history due to shifts in the predominant type of volcanism in the late Archean that limited its availability and an increase in euxinic conditions in the early Proterozoic that favored its precipitation as nickel sulfide minerals. Observations presented herein indicate that the methanogen, Methanosarcina barkeri, can acquire nickel at low concentration (<20 nM) from soluble and mineral sources. Furthermore, M. barkeri was shown to actively reduce nickelian pyrite; use dissolution products to meet their iron, sulfur, and nickel demands; and bioaccumulate nickel. These data help to explain how M. barkeri (and possibly other methanogens and anaerobes) can acquire nickel in contemporary and past anoxic or euxinic environments.
Collapse
Affiliation(s)
- Rachel L. Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Devon Payne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
7
|
Payne D, Spietz RL, Newell DL, Dijkstra P, Boyd ES. Influence of sulfide on diazotrophic growth of the methanogen Methanococcus maripaludis and its implications for the origin of nitrogenase. Commun Biol 2023; 6:799. [PMID: 37524775 PMCID: PMC10390477 DOI: 10.1038/s42003-023-05163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/21/2023] [Indexed: 08/02/2023] Open
Abstract
Methanogens inhabit euxinic (sulfide-rich) or ferruginous (iron-rich) environments that promote the precipitation of transition metals as metal sulfides, such as pyrite, reducing metal or sulfur availability. Such environments have been common throughout Earth's history raising the question as to how anaerobes obtain(ed) these elements for the synthesis of enzyme cofactors. Here, we show a methanogen can synthesize molybdenum nitrogenase metallocofactors from pyrite as the source of iron and sulfur, enabling nitrogen fixation. Pyrite-grown, nitrogen-fixing cells grow faster and require 25-fold less molybdenum than cells grown under euxinic conditions. Growth yields are 3 to 8 times higher in cultures grown under ferruginous relative to euxinic conditions. Physiological, transcriptomic, and geochemical data indicate these observations are due to sulfide-promoted metal limitation, in particular molybdenum. These findings suggest that molybdenum nitrogenase may have originated in a ferruginous environment that titrated sulfide to form pyrite, facilitating the availability of sufficient iron, sulfur, and molybdenum for cofactor biosynthesis.
Collapse
Affiliation(s)
- Devon Payne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Rachel L Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Dennis L Newell
- Department of Geosciences, Utah State University, Logan, UT, 84322, USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
8
|
Boyd ES, Spietz RL, Kour M, Colman DR. A naturalist perspective of microbiology: Examples from methanogenic archaea. Environ Microbiol 2023; 25:184-198. [PMID: 36367391 DOI: 10.1111/1462-2920.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Storytelling has been the primary means of knowledge transfer over human history. The effectiveness and reach of stories are improved when the message is appropriate for the target audience. Oftentimes, the stories that are most well received and recounted are those that have a clear purpose and that are told from a variety of perspectives that touch on the varied interests of the target audience. Whether scientists realize or not, they are accustomed to telling stories of their own scientific discoveries through the preparation of manuscripts, presentations, and lectures. Perhaps less frequently, scientists prepare review articles or book chapters that summarize a body of knowledge on a given subject matter, meant to be more holistic recounts of a body of literature. Yet, by necessity, such summaries are often still narrow in their scope and are told from the perspective of a particular discipline. In other words, interdisciplinary reviews or book chapters tend to be the rarity rather than the norm. Here, we advocate for and highlight the benefits of interdisciplinary perspectives on microbiological subjects.
Collapse
Affiliation(s)
- Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Rachel L Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Manjinder Kour
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
9
|
Spietz RL, Payne D, Szilagyi R, Boyd ES. Reductive biomining of pyrite by methanogens. Trends Microbiol 2022; 30:1072-1083. [PMID: 35624031 DOI: 10.1016/j.tim.2022.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/13/2023]
Abstract
Pyrite (FeS2) is the most abundant iron sulfide mineral in Earth's crust. Until recently, FeS2 has been considered a sink for iron (Fe) and sulfur (S) at low temperature in the absence of oxygen or oxidative weathering, making these elements unavailable to biology. However, anaerobic methanogens can transfer electrons extracellularly to reduce FeS2 via direct contact with the mineral. Reduction of FeS2 occurs through a multistep process that generates aqueous sulfide (HS-) and FeS2-associated pyrrhotite (Fe1-xS). Subsequent dissolution of Fe1-xS provides Fe(II)(aq), but not HS-, that rapidly complexes with HS-(aq) generated from FeS2 reduction to form soluble iron sulfur clusters [nFeS(aq)]. Cells assimilate nFeS(aq) to meet Fe/S nutritional demands by mobilizing and hyperaccumulating Fe and S from FeS2. As such, reductive dissolution of FeS2 by methanogens has important implications for element cycling in anoxic habitats, both today and in the geologic past.
Collapse
Affiliation(s)
- Rachel L Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Devon Payne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Robert Szilagyi
- Department of Chemistry, University of British Columbia - Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
10
|
Steward KF, Payne D, Kincannon W, Johnson C, Lensing M, Fausset H, Németh B, Shepard EM, Broderick WE, Broderick JB, Dubois J, Bothner B. Proteomic Analysis of Methanococcus voltae Grown in the Presence of Mineral and Nonmineral Sources of Iron and Sulfur. Microbiol Spectr 2022; 10:e0189322. [PMID: 35876569 PMCID: PMC9431491 DOI: 10.1128/spectrum.01893-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
Iron sulfur (Fe-S) proteins are essential and ubiquitous across all domains of life, yet the mechanisms underpinning assimilation of iron (Fe) and sulfur (S) and biogenesis of Fe-S clusters are poorly understood. This is particularly true for anaerobic methanogenic archaea, which are known to employ more Fe-S proteins than other prokaryotes. Here, we utilized a deep proteomics analysis of Methanococcus voltae A3 cultured in the presence of either synthetic pyrite (FeS2) or aqueous forms of ferrous iron and sulfide to elucidate physiological responses to growth on mineral or nonmineral sources of Fe and S. The liquid chromatography-mass spectrometry (LCMS) shotgun proteomics analysis included 77% of the predicted proteome. Through a comparative analysis of intra- and extracellular proteomes, candidate proteins associated with FeS2 reductive dissolution, Fe and S acquisition, and the subsequent transport, trafficking, and storage of Fe and S were identified. The proteomic response shows a large and balanced change, suggesting that M. voltae makes physiological adjustments involving a range of biochemical processes based on the available nutrient source. Among the proteins differentially regulated were members of core methanogenesis, oxidoreductases, membrane proteins putatively involved in transport, Fe-S binding ferredoxin and radical S-adenosylmethionine proteins, ribosomal proteins, and intracellular proteins involved in Fe-S cluster assembly and storage. This work improves our understanding of ancient biogeochemical processes and can support efforts in biomining of minerals. IMPORTANCE Clusters of iron and sulfur are key components of the active sites of enzymes that facilitate microbial conversion of light or electrical energy into chemical bonds. The proteins responsible for transporting iron and sulfur into cells and assembling these elements into metal clusters are not well understood. Using a microorganism that has an unusually high demand for iron and sulfur, we conducted a global investigation of cellular proteins and how they change based on the mineral forms of iron and sulfur. Understanding this process will answer questions about life on early earth and has application in biomining and sustainable sources of energy.
Collapse
Affiliation(s)
- Katherine F. Steward
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Devon Payne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Will Kincannon
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Christina Johnson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Malachi Lensing
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Hunter Fausset
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Brigitta Németh
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Eric M. Shepard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - William E. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Joan B. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Jen Dubois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| |
Collapse
|