1
|
Jossefa AA, dos Anjo Viagem L, Cerozi BDS, Chenyambuga SW. Microbiological contamination of lettuce (Lactuca sativa) reared with tilapia in aquaponic systems and use of bacillus strains as probiotics to prevent diseases: A systematic review. PLoS One 2024; 19:e0313022. [PMID: 39527521 PMCID: PMC11554229 DOI: 10.1371/journal.pone.0313022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Aquaponic systems are food production systems that combine aquaculture and hydroponic in a closed recirculation system where water provides nutrients to plants while plants purify water for fish. In this system, tilapia is the most commonly cultured fish and can be easily integrated with vegetable cultivation. However, tilapia host a diverse microbiota some of which are pathogenic and can infect humans. Previous studies have reported contamination of lettuce by pathogenic bacteria which can cause human diseases. Thus, there is an urgent need to employ effective methods to control those bacteria, and Bacillus strains have been successfully used in this context. This systematic review aimed to provide a comprehensive overview of lettuce contamination by pathogenic bacteria and the use of Bacillus as probiotics to prevent diseases in aquaponics systems. This systematic review was performed using Preferred Reporting Items for Systematic Review and Meta-Analysis Statement (PRISMA) Guidelines. A total of 1,239 articles were retrieved and based on eligibility criteria, six articles were included after screening. The review revealed that Enterobacteriaceae, Coliforms, and Shiga Toxin-producing E. coli are the predominant bacteria contaminating lettuce leaves in Aquaponic systems, and Shiga Toxin-Producing E. coli can internalize in the lettuce leaves, putting public health at risk. The included studies did not report the presence of V. cholerae in lettuce grown in aquaponic systems, and the use of Bacillus as probiotics to control Escherichia coli and Vibrio Cholerae. Further research is needed to explore the potential of tilapia to act as a source of pathogenic bacteria that can contaminate lettuce, as well as to investigate the effectiveness of Bacillus strains as probiotics to control these bacteria and ensure food safety.
Collapse
Affiliation(s)
- Angélica Adiação Jossefa
- Departamente of Animal, Aquaculture and Range Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
- Higher School of Rural Development, Eduardo Mondlane University, Inhambane, Mozambique
| | - Leonildo dos Anjo Viagem
- Departamente of Animal, Aquaculture and Range Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Food and Agricultural, Rovuma University, Morogoro, Cabo Delgado, Mozambique
| | - Brunno da Silva Cerozi
- Department of Animal Science, College of Agriculture, University of Sao Paulo, Piracicaba, São Paulo, Brazil
| | | |
Collapse
|
2
|
Chen H, Dai D, Yu X, Ying L, Wu S, Chen R, Xu B, Zhao M, Zheng X. Effect of the residual levofloxacin on hydroponic vegetables with sewage treatment plant tailwater: Microbial community, discharge risk and control strategy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117087. [PMID: 39317069 DOI: 10.1016/j.ecoenv.2024.117087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Tailwater-based hydroponic vegetable is a promising strategy for domestic wastewater recycling. However, the effect of residual antibiotics on the hydroponic vegetable system and the relation between hydroponic culture parameters and the residual water quality are still unclear. Here, the typical antibiotic Levofloxacin (LVFX) was employed, and the effect of LVFX (5 mg/L) on the residual water quality, plant growth and microbial community of water spinach hydroponic culture system were investigated under different hydraulic residence times (HRT). Obvious toxic effects on water spinach were observed, and the highest removal rate of LVFX (about 6 %) and TN (25.67±1.43 %) was observed when HRT was 7 days. Hydroponic culture increased the microbial abundance, diversity, and microbial community stability. To optimize the hydroponic culture, actual sewage plant tailwater spiked with 20 μg/L LVFX, along with three common planting substrates (sponge, ceramsite, and activated carbon) were used for the hydroponic culture of lettuce (seasonal reasons). The inhibition effect of LVFX on the removal of NO3--N and TN was observed even as the LVFX concentration decreased significantly (from 14.62 ± 0.44 μg/L to 0.65 ± 0.07 μg/L). The best growth situation of lettuce and removal rates of NH4+-N, NO3--N, TN, especially LVFX (up to 95.65 ± 0.54 %) were observed in the activated carbon treated group. The overall results indicate the negative effect of residual antibiotics on the hydroponic vegetable systems, and adding activated carbon as substrate is an effective strategy for supporting plant growth and controlling discharged risk.
Collapse
Affiliation(s)
- Huihua Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Wenzhou Cuarun Water Treatment Co., Ltd, Wenzhou, Zhejiang 325000, PR China
| | - Duiwu Dai
- Zhejiang Ricosmos Environmental Resource Co., Ltd, Wenzhou, Zhejiang 325000, PR China
| | - Xiangfen Yu
- Wenzhou Cuarun Water Treatment Co., Ltd, Wenzhou, Zhejiang 325000, PR China
| | - Liya Ying
- Wenzhou Cuarun Water Treatment Co., Ltd, Wenzhou, Zhejiang 325000, PR China
| | - Shengyu Wu
- Wenzhou Cuarun Water Treatment Co., Ltd, Wenzhou, Zhejiang 325000, PR China
| | - Ruihuan Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; State & Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang 325035, PR China; Key Laboratory of Zhejiang Province for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang 325035, PR China.
| | - Bentuo Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; State & Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang 325035, PR China; Key Laboratory of Zhejiang Province for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang 325035, PR China
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; State & Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang 325035, PR China; Key Laboratory of Zhejiang Province for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang 325035, PR China
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; State & Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang 325035, PR China; Key Laboratory of Zhejiang Province for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang 325035, PR China.
| |
Collapse
|
3
|
Hamilton AN, Gibson KE, Amalaradjou MA, Callahan CW, Millner PD, Ilic S, Lewis Ivey ML, Shaw AM. Cultivating Food Safety Together: Insights About the Future of Produce Safety in the U.S. Controlled Environment Agriculture Sector. J Food Prot 2023; 86:100190. [PMID: 37926289 DOI: 10.1016/j.jfp.2023.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/02/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Controlled environment agriculture (CEA) is a rapidly growing sector that presents unique challenges and opportunities in ensuring food safety. This manuscript highlights critical gaps and needs to promote food safety in CEA systems as identified by stakeholders (n=47) at the Strategizing to Advance Future Extension andResearch (S.A.F.E.R.) CEA conference held in April 2023 at The Ohio State University's Ohio CEA Research Center. Feedback collected at the conference was analyzed using an emergent thematic analysis approach to determine key areas of focus. Research-based guidance is specific to the type of commodity, production system type, and size. Themes include the need for improved supply chain control, cleaning, and sanitization practices, pathogen preventive controls and mitigation methods and training and education. Discussions surrounding supply chain control underscored the significance of the need for approaches to mitigate foodborne pathogen contamination. Effective cleaning and sanitization practices are vital to maintaining a safe production environment, with considerations such as establishing standard operating procedures, accounting for hygienic equipment design, and managing the microbial communities within the system. Data analysis further highlights the need for risk assessments, validated pathogen detection methods, and evidence-based guidance in microbial reduction. In addition, training and education were identified as crucial in promoting a culture of food safety within CEA. The development of partnerships between industry, regulatory, and research institutions are needed to advance data-driven guidance and practices across the diverse range of CEA operations and deemed essential for addressing challenges and advancing food safety practices in CEA. Considering these factors, the CEA industry can enhance food safety practices, foster consumer trust, and support its long-term sustainability.
Collapse
Affiliation(s)
- Allyson N Hamilton
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR 72704, USA
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR 72704, USA
| | - Mary Anne Amalaradjou
- Department of Animal Science, University of Connecticut, George White Bldg, Room 212 B, Storrs, CT 06169 USA
| | - Christopher W Callahan
- UVM Extension, College of Agriculture and Life Sciences, The University of Vermont, PO Box 559, Bennington VT 05201, USA
| | - Patricia D Millner
- Environmental Microbial & Food Safety Lab, 10300 Baltimore Avenue Building 001 BARC-West, Room 140, Beltsville, MD 20705, USA
| | - Sanja Ilic
- Human Nutrition, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH 43210, USA
| | - Melanie L Lewis Ivey
- Department of Plant Pathology College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Angela M Shaw
- Department of Animal and Food Sciences, Texas Tech University, Box 42141, Lubbock, TX 79409, USA.
| |
Collapse
|
4
|
Dinev T, Velichkova K, Stoyanova A, Sirakov I. Microbial Pathogens in Aquaponics Potentially Hazardous for Human Health. Microorganisms 2023; 11:2824. [PMID: 38137969 PMCID: PMC10745371 DOI: 10.3390/microorganisms11122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
The union of aquaculture and hydroponics is named aquaponics-a system where microorganisms, fish and plants coexist in a water environment. Bacteria are essential in processes which are fundamental for the functioning and equilibrium of aquaponic systems. Such processes are nitrification, extraction of various macro- and micronutrients from the feed leftovers and feces, etc. However, in aquaponics there are not only beneficial, but also potentially hazardous microorganisms of fish, human, and plant origin. It is important to establish the presence of human pathogens, their way of entering the aforementioned systems, and their control in order to assess the risk to human health when consuming plants and fish grown in aquaponics. Literature analysis shows that aquaponic bacteria and yeasts are mainly pathogenic to fish and humans but rarely to plants, while most of the molds are pathogenic to humans, plants, and fish. Since the various human pathogenic bacteria and fungi found in aquaponics enter the water when proper hygiene practices are not applied and followed, if these requirements are met, aquaponic systems are a good choice for growing healthy fish and plants safe for human consumption. However, many of the aquaponic pathogens are listed in the WHO list of drug-resistant bacteria for which new antibiotics are urgently needed, making disease control by antibiotics a real challenge. Because pathogen control by conventional physical methods, chemical methods, and antibiotic treatment is potentially harmful to humans, fish, plants, and beneficial microorganisms, a biological control with antagonistic microorganisms, phytotherapy, bacteriophage therapy, and nanomedicine are potential alternatives to these methods.
Collapse
Affiliation(s)
- Toncho Dinev
- Department of Biological Sciences, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Katya Velichkova
- Department of Biological Sciences, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Antoniya Stoyanova
- Department of Plant Production, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Ivaylo Sirakov
- Department of Animal Husbandry–Non-Ruminant Animals and Special Branches, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|