1
|
Al-Mustapha AI, Tiwari A, Laukkanen-Ninios R, Lehto KM, Oikarinen S, Lipponen A, Pitkänen T, Heikinheimo A. Wastewater based genomic surveillance key to population level monitoring of AmpC/ESBL producing Escherichia coli. Sci Rep 2025; 15:7400. [PMID: 40033002 PMCID: PMC11876440 DOI: 10.1038/s41598-025-91516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
Antimicrobial resistance (AMR) is a serious threat to global public health, but obtaining representative data on AMR for healthy human populations is difficult. Here, we leverage the power of whole genome sequencing (WGS) to screen AmpC- and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli from 77 composite samples obtained from 10 wastewater treatment plants across Finland. We found a high abundance of multidrug-resistant AmpC/ESBL-producing E. coli and significant differences in the diversity of AMR genes between the sampled cities. The in silico analysis of 73 short-read genome sequences shows the clonally diverse isolates consisting of 30 sequence types (STs), including the globally distributed pandemic ST131 clone. The CTX-M ESBL genes were detected in 86.3% (63/73) of the isolates concurrently with the blaTEM-1 (31.5%, 23/73) and blaOXA-1 (9.6%, 7/73) genes. The most prevalent ESBL genes were blaCTX-M-15 (46.6%, 34/73), blaCTX-M-27 (16.4%, 12/73), blaCTX-M-14 (4.1%, 3/73), and blaCTX-M-55 (4.1%, 3/73). Two isolates harboured the carbapenemase resistance gene, blaKPC-2 and blaNDM-1, respectively. In addition, WGS predicted phenotypic resistance against aminoglycosides, beta-lactams, cephalosporins, quinolones, sulfonamides, carbapenems, and polymyxins. The diversity of antibiotic- and stress-resistance genes correlated with the clinical incidence reported in the Finnish AMR report. Core-genome MLST revealed two wastewater genomic clusters but no genomic clusters among human and wastewater ST131 isolates. Our findings suggest the circulation of distinct clonal lineages of AmpC/ESBL-producing E. coli across Finland, with variations in AMR gene diversity and abundance by wellbeing service county. Also, our findings underscore the fact that wastewater surveillance could be key to population-level monitoring of AmpC/ESBL-producing Escherichia coli and can serve as complementary data to guide public health decisions. We propose longitudinal WGS-based epidemiology as an economically feasible approach for global AMR surveillance, pathogen evolution, and prediction of AMR.
Collapse
Affiliation(s)
- Ahmad Ibrahim Al-Mustapha
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
- Department of Veterinary Services, Kwara State Ministry of Agriculture and Rural Development, Kwara State, Ilorin, Nigeria.
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Public Health, Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Riikka Laukkanen-Ninios
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi-Maarit Lehto
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anssi Lipponen
- Department of Public Health, Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Medicine, Unit of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Tarja Pitkänen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Public Health, Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Finnish Food Authority, Ruokavirasto, Seinäjoki, Finland
| |
Collapse
|
2
|
Urzua-Abad MM, Aquino-Andrade A, Castelan-Vega JA, Merida-Vieyra J, Ribas-Aparicio RM, Belmont-Monroy L, Jimenez-Alberto A, Aparicio-Ozores G. Detection of carbapenemases in Enterobacterales and other Gram-negative bacilli recovered from hospital and municipal wastewater in Mexico City. Sci Rep 2024; 14:26576. [PMID: 39496672 PMCID: PMC11535501 DOI: 10.1038/s41598-024-76824-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Wastewater serves as a reservoir for antimicrobial-resistant bacteria. This study revealed the presence of carbapenem-resistant and carbapenemase-producing Gram-negative bacilli (GNB), established clonal relationships among isolates in hospital and municipal wastewater, and identified a high-risk clone in municipal wastewater. A total of 63 isolates of GNB were obtained, with Enterobacterales being the most frequently isolated group (62%). Carbapenemase-producing Lelliottia amnigena, Kluyvera cryocrescens, and Shewanella putrefaciens isolates were documented for the first time in Mexico. The detectableted carbapenemase genes were blaKPC (55%), blaNDM (12%), blaVIM-2 (12%), blaOXA-48 (4%), blaGES (2%), blaNDM-1 (2%), and blaNDM-5 (2%). Clonal relationships were observed among Klebsiella pneumoniae and Enterobacter spp. isolates, and remarkably the high-risk clone Escherichia coli ST361, carrying blaNDM-5, was identified. This study demonstrates that wastewater harbours carbapenem-resistant and carbapenemase-producing bacteria, posing a public health threat that requires epidemiological surveillance.
Collapse
Affiliation(s)
- Maria Magdalena Urzua-Abad
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Mexico City, Mexico
- Laboratorio de Microbiologia Molecular, Instituto Nacional de Pediatria, 04530, Mexico City, Mexico
| | - Alejandra Aquino-Andrade
- Laboratorio de Microbiologia Molecular, Instituto Nacional de Pediatria, 04530, Mexico City, Mexico
| | - Juan Arturo Castelan-Vega
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Mexico City, Mexico.
| | - Jocelin Merida-Vieyra
- Laboratorio de Microbiologia Molecular, Instituto Nacional de Pediatria, 04530, Mexico City, Mexico
| | - Rosa Maria Ribas-Aparicio
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Mexico City, Mexico
| | - Laura Belmont-Monroy
- Laboratorio de Microbiologia Molecular, Instituto Nacional de Pediatria, 04530, Mexico City, Mexico
| | - Alicia Jimenez-Alberto
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Mexico City, Mexico
| | - Gerardo Aparicio-Ozores
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Mexico City, Mexico.
| |
Collapse
|
3
|
Gobbo A, Fraiture MA, Van Poelvoorde L, De Keersmaecker SCJ, Garcia-Graells C, Van Hoorde K, Verhaegen B, Huwaert A, Maloux H, Hutse V, Ceyssens PJ, Roosens N. Strategy to develop and validate digital droplet PCR methods for global antimicrobial resistance wastewater surveillance. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11145. [PMID: 39467614 DOI: 10.1002/wer.11145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024]
Abstract
According to World Health Organization (WHO), antimicrobial resistance (AMR) is currently one of the world's top 10 health threats, causing infections to become difficult or impossible to treat, increasing the risk of disease spread, severe illness, disability, and death. Accurate surveillance is a key component in the fight against AMR. Wastewater is progressively becoming a new player in AMR surveillance, with the promise of a cost-effective real-time tracking of global AMR profiles in specific regions. One of the most useful analytical methods for wastewater surveillance is currently based on real-time PCR (qPCR) and digital droplet PCR (ddPCR) technologies. As stated in the EU Wastewater Treatment Directive proposal, methodological standardization, including a workflow for method development and validation, will play a crucial role in global monitoring of AMR in wastewater. However, according to our knowledge, there are currently no qPCR and ddPCR methods for AMR surveillance available that have been validated according to international standard performance criteria. Therefore, this study proposes a workflow for the development and validation of PCR-based methods for a harmonized and global AMR surveillance, including the construction of specific sequence databases and microbial collections for an efficient method development and method specificity evaluation. Following this strategy, we have developed and validated four duplex ddPCR methods responding to international standard performance criteria, focusing on seven AMR genes (ARG's), including extended spectrum beta-lactam (blaCTX-M), carbapenem (blaKPC-2/3), tetracycline (tet(M)), erythromycin (erm(B)), vancomycin (vanA), sulfonamide (sul2), and aminoglycoside (aac(3)-IV), as well as one indicator of antibiotic (multi-) resistance and horizontal gene transfer, named the class I integron (intl1). The performance of these ddPCR methods was successfully assessed for their specificity, as no false-positive and false-negative results were observed. These ddPCR methods were also considered to be highly sensitive as showing a limit of detection below 25 copies of the targets. In addition, their applicability was confirmed using 14 wastewater samples collected from two Belgian water resource recovery facilities. The proposed study represents therefore a step forward to reinforce method harmonization in the context of the global AMR surveillance in wastewater. PRACTITIONER POINTS: In the context of wastewater surveillance, no PCR-based methods for global AMR monitoring are currently validated according to international standards. Consequently, we propose a workflow to develop and validate PCR-based methods for a harmonized and global AMR surveillance. This workflow resulted here in four duplex ddPCR methods targeting seven ARGs and one general indicator for mobilizable resistance genes. The applicability of these validated ddPCR methods was confirmed on 14 wastewater samples from two Belgian water resource recovery facilities.
Collapse
Affiliation(s)
- Andrea Gobbo
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | | | | | | | | | | | | | - Hadrien Maloux
- Epidemiology of infectious diseases, Sciensano, Brussels, Belgium
| | - Veronik Hutse
- Epidemiology of infectious diseases, Sciensano, Brussels, Belgium
| | | | - Nancy Roosens
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| |
Collapse
|
4
|
Tiwari A, Radu E, Kreuzinger N, Ahmed W, Pitkänen T. Key considerations for pathogen surveillance in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173862. [PMID: 38876348 DOI: 10.1016/j.scitotenv.2024.173862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Wastewater surveillance (WWS) has received significant attention as a rapid, sensitive, and cost-effective tool for monitoring various pathogens in a community. WWS is employed to assess the spatial and temporal trends of diseases and identify their early appearances and reappearances, as well as to detect novel and mutated variants. However, the shedding rates of pathogens vary significantly depending on factors such as disease severity, the physiology of affected individuals, and the characteristics of pathogen. Furthermore, pathogens may exhibit differential fate and decay kinetics in the sewerage system. Variable shedding rates and decay kinetics may affect the detection of pathogens in wastewater. This may influence the interpretation of results and the conclusions of WWS studies. When selecting a pathogen for WWS, it is essential to consider it's specific characteristics. If data are not readily available, factors such as fate, decay, and shedding rates should be assessed before conducting surveillance. Alternatively, these factors can be compared to those of similar pathogens for which such data are available.
Collapse
Affiliation(s)
- Ananda Tiwari
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| | - Elena Radu
- Institute for Water Quality and Resource Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna, Austria; Stefan S. Nicolau Institute of Virology, Department of Cellular and Molecular Pathology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania; University of Medicine and Pharmacy Carol Davila, Department of Virology, 37 Dionisie Lupu Street, 020021 Bucharest, Romania.
| | - Norbert Kreuzinger
- Institute for Water Quality and Resource Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna, Austria.
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| |
Collapse
|
5
|
Zaragozá González R, Iglesias Llorente L, Fernández-Paniagua EÁ, Alonso Acero L, Monserrat Blázquez T, Horcajada I, Florén Zabala LF. Nosocomial cluster of patients infected with imipenemase-1-producing Enterobacter ludwigii. J Med Microbiol 2024; 73. [PMID: 39470589 DOI: 10.1099/jmm.0.001919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Introduction. Imipenemase (IMI) enzymes are an uncommon class A carbapenemases that have been isolated from aquatic environments and, occasionally, from clinical isolates of Enterobacterales.Aim. We describe a cluster of three patients infected by IMI-1 carbapenemase-producing Enterobacter ludwigii (IMI-1-Elud) in a tertiary university hospital in Gran Canaria, Spain.Methodology. Antimicrobial susceptibility was determined using the Vitek2 AST-N355 card and antibiotic gradient strips. The modified carbapenem inactivation method (CIM) test was performed in cases where the ertapenem MIC value was higher than 0.125 mg l-1. The carbapenemase was identified by PCR and DNA microarray and later characterized by whole-genome next-generation sequencing (NGS) with Illumina.Results. Three patients presented thoracic or abdominal infections caused by IMI-1-Elud ST1677 from 14 June 2022 to 14 July 2022. All patients underwent at least one gastroscopy during their admission, and two of them were located in adjoining rooms. Isolates were resistant to carbapenems, colistin and fosfomycin but susceptible to ciprofloxacin. IMI/NMC-A carbapenemase was detected by PCR and hybridization test and confirmed by NGS as IMI-1. All patients underwent at least one gastroscopy, and two of them were in nearby rooms. Patients showed microbiological and clinical improvement following focus drainage and targeted antibiotic treatment with a fluoroquinolone.Conclusions. This study reports the first documented global outbreak of patients infected with IMI-1-Elud. The source appeared to be related to endoscopes. Contact transmission may also have played a role. A screening method such as the modified CIM test is crucial for detecting less common carbapenemases that might not be identified by rapid molecular or immunochromatographic tests, as these often do not include bla IMI genes, which could lead to the undetected dissemination of carbapenemase-producing Enterobacterales. Effective infection source control and targeted treatment are essential for achieving a favourable clinical outcome.
Collapse
Affiliation(s)
- Raquel Zaragozá González
- Department of Clinical Microbiology, University Hospital of Gran Canaria Doctor Negrín, Las Palmas, Spain
| | - Laura Iglesias Llorente
- Department of Clinical Microbiology, University Hospital of Gran Canaria Doctor Negrín, Las Palmas, Spain
| | | | - Laura Alonso Acero
- Department of Clinical Microbiology, University Hospital of Gran Canaria Doctor Negrín, Las Palmas, Spain
| | - Teresa Monserrat Blázquez
- Department of Preventive Medicine, University Hospital of Gran Canaria Doctor Negrín, Las Palmas, Spain
| | - Iballa Horcajada
- Department of Clinical Microbiology, University Hospital of Gran Canaria Doctor Negrín, Las Palmas, Spain
| | - Laura Florén Florén Zabala
- Department of Clinical Microbiology, University Hospital of Gran Canaria Doctor Negrín, Las Palmas, Spain
| |
Collapse
|
6
|
Sarekoski A, Lipponen A, Hokajärvi AM, Räisänen K, Tiwari A, Paspaliari D, Lehto KM, Oikarinen S, Heikinheimo A, Pitkänen T. Simultaneous biomass concentration and subsequent quantitation of multiple infectious disease agents and antimicrobial resistance genes from community wastewater. ENVIRONMENT INTERNATIONAL 2024; 191:108973. [PMID: 39182255 DOI: 10.1016/j.envint.2024.108973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/01/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Wastewater-based surveillance (WBS) of infectious disease agents is increasingly seen as a reliable source of population health data. To date, wastewater-based surveillance efforts have largely focused on individual pathogens. However, given that wastewater contains a broad range of pathogens circulating in the population, a more comprehensive approach could enhance its usability. We focused on the simultaneous detection of SARS-CoV-2, sapovirus, Campylobacter jejuni, Campylobacter coli, Salmonella spp., pathogenic Escherichia coli, Cryptosporidium spp., Giardia spp. and antimicrobial resistance genes (ARGs) of clinical relevance. To achieve this goal, biomass concentration and nucleic acid extraction methods were optimized, and samples were analyzed by using a set of (RT)-qPCR and (HT)-qPCR methods. We determined the prevalence and the spatial and temporal trends of the targeted pathogens and collected novel information on ARGs in Finnish wastewater. In addition, the use of different wastewater concentrates, namely the ultrafiltered concentrate of the supernatant and the centrifuged pellet, and the effect of freezing and thawing wastewater prior to sample processing were investigated with the indicator microbe crAssphage. Freeze-thawing of wastewater decreased the gene copy count of crAssphage in comparison to analyzing fresh samples (p < 0.001). Campylobacters were most abundant in two of the four studied summer months (30 % detection rate) and in wastewaters from regions with intensive animal farming. Salmonella, however, was detected in 40 % of the samples without any clear seasonal trends, and the highest gene copy numbers were recorded from the largest wastewater treatment plants. Beta-lactamase resistance genes that have commonly been detected in bacteria isolated from humans in Finland, namely blaCTX-M, blaOXA48, blaNDM, and blaKPC, were also frequently detected in wastewaters (100, 98, 98, and 70 % detection rates, respectively). These results confirm the reliability of using wastewater in public health surveillance and demonstrate the possibility to simultaneously perform WBS of multiple pathogens.
Collapse
Affiliation(s)
- Anniina Sarekoski
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Neulaniementie 4, Kuopio FI-70701, Finland; University of Helsinki, Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland.
| | - Anssi Lipponen
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Neulaniementie 4, Kuopio FI-70701, Finland.
| | - Anna-Maria Hokajärvi
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Neulaniementie 4, Kuopio FI-70701, Finland.
| | - Kati Räisänen
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Mannerheimintie 166, Helsinki FI-00271, Finland.
| | - Ananda Tiwari
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Neulaniementie 4, Kuopio FI-70701, Finland.
| | - Dafni Paspaliari
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Mannerheimintie 166, Helsinki FI-00271, Finland.
| | - Kirsi-Maarit Lehto
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland.
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland.
| | - Annamari Heikinheimo
- University of Helsinki, Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland; Finnish Food Authority, Alvar Aallon katu 5, FI-60100 Seinäjoki, Finland.
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Neulaniementie 4, Kuopio FI-70701, Finland; University of Helsinki, Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland.
| |
Collapse
|
7
|
Conte D, Mesa D, Krul D, Bail L, Ito CAS, Palmeiro JK, Dalla-Costa LM. Comparative genomics of IncQ1 plasmids carrying bla GES variants from clinical and environmental sources in Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105644. [PMID: 39038632 DOI: 10.1016/j.meegid.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
IncQ-type plasmids have become important vectors in the dissemination of blaGES among different bacterial genera and species from different environments around the world, and studies estimating the occurrence of Guiana extended-spectrum (GES)-type β-lactamases are gaining prominence. We analyzed the genetic aspects of two IncQ1 plasmids harboring different blaGES variants from human and environmental sources. The blaGES variants were identified using polymerase chain reaction (PCR) in Aeromonas veronii isolated from hospital effluent and Klebsiella variicola isolated from a rectal swab of a patient admitted to the cardiovascular intensive care unit in a different hospital. Antimicrobial-susceptibility testing and transformation experiments were performed for phenotypic analysis. Whole-genome sequencing was performed using Illumina and Oxford Nanopore platforms. The comparative analysis of plasmids was performed using BLASTn, and the IncQ1 plasmids showed a high identity and similar size. A. veronii harbored blaGES-7 in a class 1 integron (In2061), recently described by our group, and K. variicola carried blaGES-5 in the known class 1 integron. Both integrons showed a fused gene cassette that encodes resistance to aminoglycosides and fluoroquinolones, with an IS6100 truncating the 3'-conserved segment. The fused genes are transcribed together, although the attC site is disrupted. These gene cassettes can no longer be mobilized. This study revealed a mobilome that may contribute to the dissemination of GES-type β-lactamases in Brazil. Class 1 integrons are hot spots for bacterial evolution, and their insertion into small IncQ-like plasmids displayed successful recombination, allowing the spread of blaGES variants in various environments. Therefore, they can become prevalent across clinically relevant pathogens.
Collapse
Affiliation(s)
- Danieli Conte
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil.
| | - Dany Mesa
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Damaris Krul
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Larissa Bail
- Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | | | - Jussara Kasuko Palmeiro
- Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; Laboratório de Microbiologia Molecular Aplicada, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Libera Maria Dalla-Costa
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| |
Collapse
|
8
|
Tiwari A, Lehto KM, Paspaliari DK, Al-Mustapha AI, Sarekoski A, Hokajärvi AM, Länsivaara A, Hyder R, Luomala O, Lipponen A, Oikarinen S, Heikinheimo A, Pitkänen T. Developing wastewater-based surveillance schemes for multiple pathogens: The WastPan project in Finland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171401. [PMID: 38467259 DOI: 10.1016/j.scitotenv.2024.171401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Wastewater comprises multiple pathogens and offers a potential for wastewater-based surveillance (WBS) to track the prevalence of communicable diseases. The Finnish WastPan project aimed to establish wastewater-based pandemic preparedness for multiple pathogens (viruses, bacteria, parasites, fungi), including antimicrobial resistance (AMR). This article outlines WastPan's experiences in this project, including the criteria for target selection, sampling locations, frequency, analysis methods, and results communication. Target selection relied on epidemiological and microbiological evidence and practical feasibility. Within the WastPan framework, wastewater samples were collected between 2021 and 2023 from 10 wastewater treatment plants (WWTPs) covering 40 % of Finland's population. WWTP selection was validated for reported cases of Extended Spectrum Beta-lactamase-producing bacterial pathogens (Escherichia coli and Klebsiella pneumoniae) from the National Infectious Disease Register. The workflow included 24-h composite influent samples, with one fraction for culture-based analysis (bacteria and fungi) and the rest of the sample was reserved for molecular analysis (viruses, bacteria, antibiotic resistance genes, and parasites). The reproducibility of the monitoring workflow was assessed for SARS-CoV-2 through inter-laboratory comparisons using the N2 and N1 assays. Identical protocols were applied to same-day samples, yielding similar positivity trends in the two laboratories, but the N2 assay achieved a significantly higher detection rate (Laboratory 1: 91.5 %; Laboratory 2: 87.4 %) than the N1 assay (76.6 %) monitored only in Laboratory 2 (McNemar, p < 0.001 Lab 1, = 0.006 Lab 2). This result indicates that the selection of monitoring primers and assays may impact monitoring sensitivity in WBS. Overall, the current study recommends that the selection of sampling frequencies and population coverage of the monitoring should be based on pathogen-specific epidemiological characteristics. For example, pathogens that are stable over time may need less frequent annual sampling, while those that are occurring across regions may require reduced sample coverage. Here, WastPan successfully piloted WBS for monitoring multiple pathogens, highlighting the significance of one-litre community composite wastewater samples for assessing community health. The infrastructure established for COVID-19 WBS is valuable for monitoring various pathogens. The prioritization of the monitoring targets optimizes resource utilization. In the future legislative support in target selection, coverage determination, and sustained funding for WBS is recomended.
Collapse
Affiliation(s)
- Ananda Tiwari
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Kirsi-Maarit Lehto
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Dafni K Paspaliari
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; ECDC Fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Ahmad I Al-Mustapha
- University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland; Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Anniina Sarekoski
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| | - Anna-Maria Hokajärvi
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Annika Länsivaara
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Rafiqul Hyder
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Oskari Luomala
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Anssi Lipponen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Sami Oikarinen
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Annamari Heikinheimo
- University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland; Finnish Food Authority, Seinäjoki, Finland.
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| |
Collapse
|
9
|
Tiwari A, Krolicka A, Tran TT, Räisänen K, Ásmundsdóttir ÁM, Wikmark OG, Lood R, Pitkänen T. Antibiotic resistance monitoring in wastewater in the Nordic countries: A systematic review. ENVIRONMENTAL RESEARCH 2024; 246:118052. [PMID: 38163547 DOI: 10.1016/j.envres.2023.118052] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
The Nordic countries (Denmark, Finland, Iceland, Norway, and Sweden) have effectively kept lower antibiotic-resistant bacterial (ARB) pathogen rates than many other countries. However, in recent years, these five countries have encountered a rise in ARB cases and challenges in treating infections due to the growing prevalence of ARB pathogens. Wastewater-based surveillance (WBS) is a valuable supplement to clinical methods for ARB surveillance, but there is a lack of comprehensive understanding of WBS application for ARB in the Nordic countries. This review aims to compile the latest state-of-the-art developments in WBS for ARB monitoring in the Nordic countries and compare them with clinical surveillance practices. After reviewing 1480 papers from the primary search, 54 were found relevant, and 15 additional WBS-related papers were included. Among 69 studies analyzed, 42 dedicated clinical epidemiology, while 27 focused on wastewater monitoring. The PRISMA review of the literature revealed that Nordic countries focus on four major WBS objectives of ARB: assessing ARB in the human population, identifying ARB evading wastewater treatment, quantifying removal rates, and evaluating potential ARB evolution during the treatment process. In both clinical and wastewater contexts, the most studied targets were pathogens producing carbapenemase and extended-spectrum beta-lactamase (ESBL), primarily Escherichia coli and Klebsiella spp. However, vancomycin-resistant Enterococcus (VRE) and methicillin-resistant Staphylococcus aureus (MRSA) have received more attention in clinical epidemiology than in wastewater studies, probably due to their lower detection rates in wastewater. Clinical surveillance has mostly used culturing, antibiotic susceptibility testing, and genotyping, but WBS employed PCR-based and metagenomics alongside culture-based techniques. Imported cases resulting from international travel and hospitalization abroad appear to have frequently contributed to the rise in ARB pathogen cases in these countries. The many similarities between the Nordic countries (e.g., knowledge exchange practices, antibiotic usage patterns, and the current ARB landscape) could facilitate collaborative efforts in developing and implementing WBS for ARB in population-level screening.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 70701, Kuopio, Finland.
| | - Adriana Krolicka
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838, Bergen, Norway
| | - Tam T Tran
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838, Bergen, Norway
| | - Kati Räisänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Odd-Gunnar Wikmark
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838, Bergen, Norway; Unit for Environmental Science and Management, North West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Rolf Lood
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 70701, Kuopio, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| |
Collapse
|
10
|
Nasser-Ali M, Aja-Macaya P, Conde-Pérez K, Trigo-Tasende N, Rumbo-Feal S, Fernández-González A, Bou G, Poza M, Vallejo JA. Emergence of Carbapenemase Genes in Gram-Negative Bacteria Isolated from the Wastewater Treatment Plant in A Coruña, Spain. Antibiotics (Basel) 2024; 13:194. [PMID: 38391580 PMCID: PMC10886265 DOI: 10.3390/antibiotics13020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
Wastewater treatment plants (WWTPs) are recognized as important niches of antibiotic-resistant bacteria that can be easily spread to the environment. In this study, we collected wastewater samples from the WWTP of A Coruña (NW Spain) from April 2020 to February 2022 to evaluate the presence of Gram-negative bacteria harboring carbapenemase genes. Bacteria isolated from wastewater were classified and their antimicrobial profiles were determined. In total, 252 Gram-negative bacteria carrying various carbapenemase genes were described. Whole-genome sequencing was conducted on 55 selected carbapenemase producing isolates using Oxford Nanopore technology. This study revealed the presence of a significant population of bacteria carrying carbapenemase genes in WWTP, which constitutes a public health problem due to their risk of dissemination to the environment. This emphasizes the usefulness of WWTP monitoring for combating antibiotic resistance. Data revealed the presence of different types of sequences harboring carbapenemase genes, such as blaKPC-2, blaGES-5, blaGES-6, blaIMP-11, blaIMP-28, blaOXA-24, blaOXA-48, blaOXA-58, blaOXA-217, and blaVIM-2. Importantly, the presence of the blaKPC-2 gene in wastewater, several months before any clinical case was detected in University Hospital of A Coruña, suggests that wastewater-based epidemiology can be used as an early warning system for the surveillance of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Mohammed Nasser-Ali
- Microbiology Research Group, Institute of Biomedical Research (INIBIC)-University Hospital of A Coruña (CHUAC)-Interdisciplinary Center for Chemistry and Biology (CICA)-University of A Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII). Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruna, Spain
| | - Pablo Aja-Macaya
- Microbiology Research Group, Institute of Biomedical Research (INIBIC)-University Hospital of A Coruña (CHUAC)-Interdisciplinary Center for Chemistry and Biology (CICA)-University of A Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII). Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruna, Spain
| | - Kelly Conde-Pérez
- Microbiology Research Group, Institute of Biomedical Research (INIBIC)-University Hospital of A Coruña (CHUAC)-Interdisciplinary Center for Chemistry and Biology (CICA)-University of A Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII). Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruna, Spain
| | - Noelia Trigo-Tasende
- Microbiology Research Group, Institute of Biomedical Research (INIBIC)-University Hospital of A Coruña (CHUAC)-Interdisciplinary Center for Chemistry and Biology (CICA)-University of A Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII). Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruna, Spain
| | - Soraya Rumbo-Feal
- Microbiology Research Group, Institute of Biomedical Research (INIBIC)-University Hospital of A Coruña (CHUAC)-Interdisciplinary Center for Chemistry and Biology (CICA)-University of A Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII). Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruna, Spain
| | - Ana Fernández-González
- Microbiology Research Group, Institute of Biomedical Research (INIBIC)-University Hospital of A Coruña (CHUAC)-Interdisciplinary Center for Chemistry and Biology (CICA)-University of A Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII). Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruna, Spain
| | - Germán Bou
- Microbiology Research Group, Institute of Biomedical Research (INIBIC)-University Hospital of A Coruña (CHUAC)-Interdisciplinary Center for Chemistry and Biology (CICA)-University of A Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII). Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruna, Spain
| | - Margarita Poza
- Microbiology Research Group, Institute of Biomedical Research (INIBIC)-University Hospital of A Coruña (CHUAC)-Interdisciplinary Center for Chemistry and Biology (CICA)-University of A Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII). Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruna, Spain
- Microbiome and Health Group, Faculty of Sciences, Campus da Zapateira, 15071 A Coruna, Spain
| | - Juan A Vallejo
- Microbiology Research Group, Institute of Biomedical Research (INIBIC)-University Hospital of A Coruña (CHUAC)-Interdisciplinary Center for Chemistry and Biology (CICA)-University of A Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII). Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruna, Spain
| |
Collapse
|
11
|
Tanabe M, Sugawara Y, Denda T, Sakaguchi K, Takizawa S, Koide S, Hayashi W, Yu L, Kayama S, Sugai M, Nagano Y, Nagano N. Municipal wastewater monitoring revealed the predominance of bla GES genes with diverse variants among carbapenemase-producing organisms: high occurrence and persistence of Aeromonas caviae harboring the new bla GES variant bla GES-48. Microbiol Spectr 2023; 11:e0218823. [PMID: 37811969 PMCID: PMC10715227 DOI: 10.1128/spectrum.02188-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE The emergence and spread of carbapenemase-producing organisms (CPOs) represent a global health threat because they are associated with limited treatment options and poor clinical outcomes. Wastewater is considered a hotspot for the evolution and dissemination of antimicrobial resistance. Thus, analyses of municipal wastewater are critical for understanding the circulation of these CPOs and carbapenemase genes in local communities, which remains scarcely known in Japan. This study resulted in several key observations: (i) the vast majority of bla GES genes, including six new bla GES variants, and less frequent bla IMP genes were carbapenemase genes encountered exclusively in wastewater influent; (ii) the most dominant CPO species were Aeromonas spp., in which a remarkable diversity of new sequence types was observed; and (iii) CPOs were detected from combined sewer wastewater, but not from separate sewer wastewater, suggesting that the load of CPOs from unrecognized environmental sources could greatly contribute to their detection in influent wastewater.
Collapse
Affiliation(s)
- Mizuki Tanabe
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Tomohiro Denda
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Kanae Sakaguchi
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Shino Takizawa
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Shota Koide
- Department of Medical Sciences, Shinshu University, Graduate School of Medicine, Science and Technology, Matsumoto, Nagano, Japan
| | - Wataru Hayashi
- Department of Medical Sciences, Shinshu University, Graduate School of Medicine, Science and Technology, Matsumoto, Nagano, Japan
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Yukiko Nagano
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
- Department of Medical Sciences, Shinshu University, Graduate School of Medicine, Science and Technology, Matsumoto, Nagano, Japan
| | - Noriyuki Nagano
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
- Department of Medical Sciences, Shinshu University, Graduate School of Medicine, Science and Technology, Matsumoto, Nagano, Japan
| |
Collapse
|
12
|
Mehdipour M, Gholipour S, Mohammadi F, Hatamzadeh M, Nikaeen M. Incidence of co-resistance to antibiotics and chlorine in bacterial biofilm of hospital water systems: Insights into the risk of nosocomial infections. J Infect Public Health 2023; 16 Suppl 1:210-216. [PMID: 37951730 DOI: 10.1016/j.jiph.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
The presence of biofilms in drinking water distribution systems (DWDS) in healthcare settings poses a considerable risk to the biological security of water, particularly when the biofilm bacteria demonstrate antimicrobial resistance characteristics. This study aimed to investigate the occurrence of antibiotic-resistant bacteria (ARB) in biofilms within DWDS of hospitals. The chlorine resistance of the isolated ARB was analyzed, and then chlorine-resistant bacteria (CRB) were identified using molecular methods. Additionally, the presence of several antibiotic resistance genes (ARGs) was monitored in the isolated ARB. Out of the 41 biofilm samples collected from hospitals, ARB were detected in 32 (78%) of the samples. A total of 109 colonies of ARB were isolated from DWDS of hospitals, with β-lactam resistant bacteria, including ceftazidime-resistant and ampicillin-resistant bacteria, being the most frequently isolated ARB. Analyzing of ARGs revealed the highest detection of aac6, followed by sul1 gene. However, the β-lactamase genes blaCTX-M and blaTEM were not identified in the ARB, suggesting the presence of other β-lactamase genes not included in the tested panel. Exposure of ARB to free chlorine at a concentration of 0.5 mg/l showed that 64% of the isolates were CRB. However, increasing the chlorine concentration to 4 mg/l decreased the high fraction of ARB (91%). The dominant CRB identified were Sphingomonas, Brevundimonas, Stenotrophomonas, Bacillus and Staphylococcus with Bacillus exhibiting the highest frequency. The results highlight the potential risk of biofilm formation in the DWDS of hospitals, leading to the dissemination of ARB in hospital environments, which is a great concern for the health of hospitalized patients, especially vulnerable individuals. Surveillance of antimicrobial resistance in DWDS of hospitals can provide valuable insights for shaping antimicrobial use policies and practices that ensure their efficacy.
Collapse
Affiliation(s)
- Mohammadmehdi Mehdipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Hatamzadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
Hu M, Xing B, Yang M, Han R, Pan H, Guo H, Liu Z, Huang T, Du K, Jiang S, Zhang Q, Lu W, Huang X, Zhou C, Li J, Song W, Deng Z, Xiao M. Characterization of a novel genus of jumbo phages and their application in wastewater treatment. iScience 2023; 26:106947. [PMID: 37324530 PMCID: PMC10265529 DOI: 10.1016/j.isci.2023.106947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/22/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023] Open
Abstract
Phages widely exist in numerous environments from wastewater to deep ocean, representing a huge virus diversity, yet remain poorly characterized. Among them, jumbo phages are of particular interests due to their large genome (>200 kb) and unusual biology. To date, only six strains of jumbo phages infecting Klebsiella pneumoniae have been described. Here, we report the isolation and characterization of two jumbo phages from hospital wastewater representing the sixth genus: φKp5130 and φKp9438. Both phages showed lytic activity against broad range of clinical antibiotic-resistant K. pneumoniae strains and distinct physiology including long latent period, small burst size, and high resistance to thermal and pH stress. The treatment of sewage water with the phages cocktail resulted in dramatic decline in K. pneumoniae population. Overall, this study provides detailed molecular and genomics characterization of two novel jumbo phages, expands viral diversity, and provides novel candidate phages to facilitate environmental wastewater treatment.
Collapse
Affiliation(s)
- Ming Hu
- Department of Special Medicine, Basic Medicine College, Qingdao University, Qingdao 266071, China
| | - Bo Xing
- BGI-Shenzhen, Shenzhen 518083, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghua Yang
- BGI-Shenzhen, Shenzhen 518083, China
- BGI College, Zhengzhou University, Zhengzhou 450000, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Rui Han
- BGI-Beijing, Beijing 102601, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huazheng Pan
- Department of The Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hui Guo
- Department of The Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhen Liu
- Department of Special Medicine, Basic Medicine College, Qingdao University, Qingdao 266071, China
| | - Tao Huang
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Kang Du
- University of Science and Technology of China, Hefei 230026, China
| | | | - Qian Zhang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wenjing Lu
- Department of Dermatology, Qilu Hospital of Shandong University (Qingdao), Qingdao 266000, China
| | - Xun Huang
- Infection Control Center, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Congzhao Zhou
- University of Science and Technology of China, Hefei 230026, China
| | - Junhua Li
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Wenchen Song
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Ziqing Deng
- BGI-Shenzhen, Shenzhen 518083, China
- BGI-Beijing, Beijing 102601, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Minfeng Xiao
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
14
|
Tiwari A, Adhikari S, Zhang S, Solomon TB, Lipponen A, Islam MA, Thakali O, Sangkham S, Shaheen MNF, Jiang G, Haramoto E, Mazumder P, Malla B, Kumar M, Pitkänen T, Sherchan SP. Tracing COVID-19 Trails in Wastewater: A Systematic Review of SARS-CoV-2 Surveillance with Viral Variants. WATER 2023; 15:1018. [DOI: 10.3390/w15061018] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The emergence of new variants of SARS-CoV-2 associated with varying infectivity, pathogenicity, diagnosis, and effectiveness against treatments challenged the overall management of the COVID-19 pandemic. Wastewater surveillance (WWS), i.e., monitoring COVID-19 infections in communities through detecting viruses in wastewater, was applied to track the emergence and spread of SARS-CoV-2 variants globally. However, there is a lack of comprehensive understanding of the use and effectiveness of WWS for new SARS-CoV-2 variants. Here we systematically reviewed published articles reporting monitoring of different SARS-CoV-2 variants in wastewater by following the PRISMA guidelines and provided the current state of the art of this study area. A total of 80 WWS studies were found that reported different monitoring variants of SARS-CoV-2 until November 2022. Most of these studies (66 out of the total 80, 82.5%) were conducted in Europe and North America, i.e., resource-rich countries. There was a high variation in WWS sampling strategy around the world, with composite sampling (50/66 total studies, 76%) as the primary method in resource-rich countries. In contrast, grab sampling was more common (8/14 total studies, 57%) in resource-limited countries. Among detection methods, the reverse transcriptase polymerase chain reaction (RT-PCR)-based sequencing method and quantitative RT-PCR method were commonly used for monitoring SARS-CoV-2 variants in wastewater. Among different variants, the B1.1.7 (Alpha) variant that appeared earlier in the pandemic was the most reported (48/80 total studies), followed by B.1.617.2 (Delta), B.1.351 (Beta), P.1 (Gamma), and others in wastewater. All variants reported in WWS studies followed the same pattern as the clinical reporting within the same timeline, demonstrating that WWS tracked all variants in a timely way when the variants emerged. Thus, wastewater monitoring may be utilized to identify the presence or absence of SARS-CoV-2 and follow the development and transmission of existing and emerging variants. Routine wastewater monitoring is a powerful infectious disease surveillance tool when implemented globally.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | | | - Shuxin Zhang
- School of Civil, Mining, Environmental and Architecture Engineering, University of Wollongong, Wollongong 2522, Australia
| | | | - Anssi Lipponen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | - Md. Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj 2310, Bangladesh
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, Phayao 56000, Thailand
| | - Mohamed N. F. Shaheen
- Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, Giza 2310, Egypt
| | - Guangming Jiang
- School of Civil, Mining, Environmental and Architecture Engineering, University of Wollongong, Wollongong 2522, Australia
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong 2522, Australia
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan
| | - Payal Mazumder
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, Uttarakhand, India
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| | - Tarja Pitkänen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Samendra P. Sherchan
- Department of Biology, Morgan State University, Baltimore, MD 11428, USA
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
15
|
Tiwari A, Adhikari S, Kaya D, Islam MA, Malla B, Sherchan SP, Al-Mustapha AI, Kumar M, Aggarwal S, Bhattacharya P, Bibby K, Halden RU, Bivins A, Haramoto E, Oikarinen S, Heikinheimo A, Pitkänen T. Monkeypox outbreak: Wastewater and environmental surveillance perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159166. [PMID: 36202364 PMCID: PMC9534267 DOI: 10.1016/j.scitotenv.2022.159166] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 04/13/2023]
Abstract
Monkeypox disease (MPXD), a viral disease caused by the monkeypox virus (MPXV), is an emerging zoonotic disease endemic in some countries of Central and Western Africa but seldom reported outside the affected region. Since May 2022, MPXD has been reported at least in 74 countries globally, prompting the World Health Organization to declare the MPXD outbreak a Public Health Emergency of International Concern. As of July 24, 2022; 92 % (68/74) of the countries with reported MPXD cases had no historical MPXD case reports. From the One Health perspective, the spread of MPXV in the environment poses a risk not only to humans but also to small mammals and may, ultimately, spread to potent novel host populations. Wastewater-based surveillance (WBS) has been extensively utilized to monitor communicable diseases, particularly during the ongoing COVID-19 pandemic. It helped in monitoring infectious disease caseloads as well as specific viral variants circulating in communities. The detection of MPXV DNA in lesion materials (e.g. skin, vesicle fluid, crusts), skin rashes, and various body fluids, including respiratory and nasal secretions, saliva, urine, feces, and semen of infected individuals, supports the possibility of using WBS as an early proxy for the detection of MPXV infections. WBS of MPXV DNA can be used to monitor MPXV activity/trends in sewerage network areas even before detecting laboratory-confirmed clinical cases within a community. However, several factors affect the detection of MPXV in wastewater including, but not limited to, routes and duration time of virus shedding by infected individuals, infection rates in the relevant affected population, environmental persistence, the processes and analytical sensitivity of the used methods. Further research is needed to identify the key factors that impact the detection of MPXV biomarkers in wastewater and improve the utility of WBS of MPXV as an early warning and monitoring tool for safeguarding human health. In this review, we shortly summarize aspects of the MPXV outbreak relevant to wastewater monitoring and discuss the challenges associated with WBS.
Collapse
Affiliation(s)
- Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Department of Health Security, Expert Microbiology Research Unit, Finnish Institute for Health and Welfare, Finland.
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University (OSU), Corvallis, OR, USA
| | - Md Aminul Islam
- COVID-19 Diagnostic Laboratory, Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; Advanced Molecular Laboratory, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Samendra P Sherchan
- Department of Biology, Morgan State University, Baltimore, MD, USA; Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Ahmad I Al-Mustapha
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Oyo State, Nigeria; Department of Veterinary Services, Kwara State Ministry of Agriculture and Rural Development, Ilorin, Kwara State, Nigeria
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Srijan Aggarwal
- Department of Civil, Geological and Environmental Engineering, College of Engineering and Mines, University of Alaska Fairbanks, PO Box 755900, Fairbanks, AK 99775, USA
| | - Prosun Bhattacharya
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, IN 46556, USA
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, LA, USA
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Finnish Food Authority, Seinäjoki, Finland
| | - Tarja Pitkänen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Department of Health Security, Expert Microbiology Research Unit, Finnish Institute for Health and Welfare, Finland
| |
Collapse
|
16
|
Tiwari A, Kurittu P, Al-Mustapha AI, Heljanko V, Johansson V, Thakali O, Mishra SK, Lehto KM, Lipponen A, Oikarinen S, Pitkänen T, Heikinheimo A. Wastewater surveillance of antibiotic-resistant bacterial pathogens: A systematic review. Front Microbiol 2022; 13:977106. [PMID: 36590429 PMCID: PMC9798455 DOI: 10.3389/fmicb.2022.977106] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Infectious diseases caused by antibiotic-resistant bacterial (ARB) pathogens are a serious threat to human and animal health. The active surveillance of ARB using an integrated one-health approach can help to reduce the emergence and spread of ARB, reduce the associated economic impact, and guide antimicrobial stewardship programs. Wastewater surveillance (WWS) of ARB provides composite samples for a total population, with easy access to the mixed community microbiome. This concept is emerging rapidly, but the clinical utility, sensitivity, and uniformity of WWS of ARB remain poorly understood especially in relation to clinical evidence in sewershed communities. Here, we systematically searched the literature to identify studies that have compared findings from WWS of ARB and antibiotic resistance genes (ARG) with clinical evidence in parallel, thereby evaluating how likely WWS of ARB and ARG can relate to the clinical cases in communities. Initially, 2,235 articles were obtained using the primary search keywords, and 1,219 articles remained after de-duplication. Among these, 35 articles fulfilled the search criteria, and an additional 13 relevant articles were included by searching references in the primary literature. Among the 48 included papers, 34 studies used a culture-based method, followed by 11 metagenomics, and three PCR-based methods. A total of 28 out of 48 included studies were conducted at the single sewershed level, eight studies involved several countries, seven studies were conducted at national or regional scales, and five at hospital levels. Our review revealed that the performance of WWS of ARB pathogens has been evaluated more frequently for Escherichia coli, Enterococcus spp., and other members of the family Enterobacteriaceae, but has not been uniformly tested for all ARB pathogens. Many wastewater-based ARB studies comparing the findings with clinical evidence were conducted to evaluate the public health risk but not to relate with clinical evidence and to evaluate the performance of WWS of ARB. Indeed, relating WWS of ARB with clinical evidence in a sewershed is not straightforward, as the source of ARB in wastewater cannot be only from symptomatic human individuals but can also be from asymptomatic carriers as well as from animal sources. Further, the varying fates of each bacterial species and ARG within the sewerage make the aim of connecting WWS of ARB with clinical evidence more complicated. Therefore, future studies evaluating the performance of many AMR pathogens and their genes for WWS one by one can make the process simpler and the interpretation of results easier.
Collapse
Affiliation(s)
- Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,*Correspondence: Ananda Tiwari,
| | - Paula Kurittu
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ahmad I. Al-Mustapha
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria,Department of Veterinary Services, Kwara State Ministry of Agriculture and Rural Development, Ilorin, Nigeria
| | - Viivi Heljanko
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Venla Johansson
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Shyam Kumar Mishra
- School of Optometry and Vision Science, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Kirsi-Maarit Lehto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anssi Lipponen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tarja Pitkänen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|