1
|
Chen M, Pan J, Song Y, Liu S, Sun P, Zheng X. Effect of inulin supplementation in maternal fecal microbiota transplantation on the early growth of chicks. MICROBIOME 2025; 13:98. [PMID: 40235010 PMCID: PMC11998286 DOI: 10.1186/s40168-025-02084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/08/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Fecal microbial transplantation (FMT) is an important technology for treating diarrhea and enteritis. Additionally, FMT has been applied to improve productivity, alter abnormal behavior, relieve stress, and reduce burdens. However, some previous studies have reported that FMT may cause stress in acceptor animals. Inulin, a prebiotic, can promote growth, enhance immunity, and balance the gut microbiota. Currently, there are limited reports on the effects of combining FMT with inulin on early growth performance in chicks. RESULTS In this study, a total of 90 1-day-old chicks were randomly divided into the control group (CON), FMT group, and inulin group (INU). The CON group was fed a basic diet, whereas the FMT and INU groups received fecal microbiota transplantation and FMT with inulin treatment, respectively. Compared with the FMT and CON groups, the INU group presented significantly greater average daily gain (ADG) and average daily feed intake (ADFI) values (P < 0.05). However, the organ indices did not significantly change (P > 0.05). The ratio of the villi to crypts in the ileum significantly differed at 21 and 35 days (P < 0.05). In addition, the cecum concentrations of acetic acid and butyric acid significantly increased in the INU group (P < 0.05). In addition, gut inflammation and serum inflammation decreased in the INU group, and immune factors increased after inulin supplementation. (P < 0.05). Firmicutes and Bacteroidetes were the dominant phyla, with more than 90% of all sequences being identified as originating from these two phyla. Inulin supplementation during mother-sourced microbial transplantation significantly increased the abundance of Rikenella, Butyricicoccus, and [Ruminococcus], which contributed positively to the promotion of early intestinal health and facilitated the early growth of chicks. CONCLUSION The results of this study suggest that inulin supplementation in maternal fecal microbiota transplantation can effectively promote early growth and probiotic colonization, which favors the health of chicks. Video Abstract.
Collapse
Affiliation(s)
- Mengxian Chen
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, 130118, China
- Key Laboratory of Animal Production, Product Quality and Security (Jilin Agricultural University), Ministry of Education, Changchun, 130118, China
| | - Junxing Pan
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, 130118, China
| | - Yang Song
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, 130118, China
| | - Shenao Liu
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, 130118, China
| | - Peng Sun
- College of Life and Health, Dalian University, No. 10 Xuefu Street, Economic and Technological Development Zone, Dalian, 116622, China.
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, 130118, China.
- Key Laboratory of Animal Production, Product Quality and Security (Jilin Agricultural University), Ministry of Education, Changchun, 130118, China.
| |
Collapse
|
2
|
Zhang H, Wang Y, Luo Z, Zhang B, Lan X, Xu L, Li X, Huang Z, Bai J, Hu D. Gut microbiome reveals the trophic variation and significant adaption of three sympatric forest-dwelling ungulates on the eastern Qinghai-Xizang Plateau. BMC Microbiol 2025; 25:128. [PMID: 40069605 PMCID: PMC11895240 DOI: 10.1186/s12866-025-03812-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/06/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND The gut microbiome of herbivorous mammals regulates numerous physiological processes, including digestion and energy metabolism. The complex stomach architecture of ruminants, in conjunction with the metabolic capabilities of their microbiota, confers a considerable adaptive advantage to these animals. Nevertheless, a significant gap persists in comparative studies on the variations in the gut microbiome among sympatric ruminants and their potential adaptive implications. Accordingly, in this study, 16S rRNA gene sequencing and metagenomic approaches were used to analyse the composition and functional attributes of the gut microbiome of sympatric Moschus chrysogaster, Capricornis sumatraensis, and Cervus albirostris inhabiting the eastern periphery of the Qinghai-Xizang Plateau. RESULTS The gut microbiome of C. albirostris exhibited a higher diversity than that of M. chrysogaster and C. sumatraensis, whereas those of M. chrysogaster and C. sumatraensis were similar. Although species-specific variations existed among the three mammalian microbiomes, the microbiomes of C. albirostris and C. sumatraensis were more similar, whereas that of M. chrysogaster was markedly distinct. Metagenomic analysis revealed a pattern of functional convergence in the gut microbiome of the three species, with the gut microbiome of C. albirostris exhibiting a pronounced emphasis on carbohydrate metabolism, significantly surpassing that of M. chrysogaster and C. sumatraensis. Compared to the other two species, the gut microbiome of C. sumatraensis presented significantly elevated levels of amino acids and energy metabolism, whereas that of M. chrysogaster presented an increased capacity for 3-hydroxyacyl- [acyl carrier protein]-dehydratase production. CONCLUSION These findings suggest that the gut microbiome of sympatric M. chrysogaster, C. sumatraensis, and C. albirostris tend to converge. Metabolic variations within their gut microbiome may result in differential food resource utilisation, potentially indicating significant nutritional and ecological trait characteristics for stable coexistence.
Collapse
Affiliation(s)
- Haonan Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yichen Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Zhengwei Luo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Baofeng Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Xianna Lan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Liancheng Xu
- Zhangzhou Pientzehuang Pharmaceutical Co., Ltd, Zhangzhou, 363000, China
| | - Xuxin Li
- Zhangzhou Pientzehuang Pharmaceutical Co., Ltd, Zhangzhou, 363000, China
| | - Zhixin Huang
- Zhangzhou Pientzehuang Pharmaceutical Co., Ltd, Zhangzhou, 363000, China
| | - Jin Bai
- Banbar County Xiangrui Poverty Alleviation and Development Investment Co., Ltd, Banbar, 855500, China
| | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
3
|
Zhang X, Wang H, Niu Y, Chen C, Zhang W. Effects of cottonseed meal protein hydrolysate on intestinal microbiota of yellow-feather broilers. Front Microbiol 2024; 15:1434252. [PMID: 39360315 PMCID: PMC11445190 DOI: 10.3389/fmicb.2024.1434252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
We evaluated the effects of cottonseed meal protein hydrolysate (CPH) on the intestinal microbiota of yellow-feather broilers. We randomly divided 240 chicks into four groups with six replicates: basal diet with 0% (CON), 1% (LCPH), 3% (MCPH), or 5% (HCPH) CPH. The test lasted 63 days and included days 1-21, 22-42, and 43-63 phases. The ACE, Chao1, and Shannon indices in the MCPH and HCPH groups of 42-day-old broilers were higher than those in the CON group (p < 0.05), indicating that the cecum microbial diversity and richness were higher in these groups. Firmicutes and Bacteroidetes were the dominant phyla; however, the main genera varied during the different periods. The abundance of Lactobacillus in CPH treatment groups of 21-day-old broilers was high (p < 0.05); in the 42-day-old broilers, the abundances of Barnesiella, Clostridia_vadinBB60_group, and Parasutterella in the LCPH group, Desulfovibrio, Lactobacillus, Clostridia_vadinBB60_group, and Butyricicoccus in the MCPH group, and Megamonas and Streptococcus in the HCPH group increased; in the 63-day-old broilers, the abundance of Clostridia_UCG-014 and Synergistes in the LCPH and HCPH group, respectively, increased (p < 0.05), and that of Alistipes in the LCPH and MCPH groups decreased (p < 0.05). And changes in the abundance of probiotics were beneficial to improve the intestinal morphology and growth performance. In addition, the LCPH treatment increased the complexity of the microbial network, while the MCPH treatment had the same effect in 42-day-old broilers. Thus, CPH increased the relative abundance of beneficial intestinal microbiota and enhanced the richness and diversity of the bacterial microbiota in broilers aged <42 days; this effect was weakened after 42 days.
Collapse
Affiliation(s)
| | | | | | - Cheng Chen
- *Correspondence: Cheng Chen, ; Wenju Zhang,
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
4
|
Luo R, DanWu, Luo Z, Li Y, Zhong Y, Li K, Bai Z, Gongga, Suolangsizhu. Alterations in the diversity and composition of the fecal microbiota of domestic yaks (Bos grunniens) with pasture alteration-induced diarrhea. BMC Vet Res 2024; 20:355. [PMID: 39123170 PMCID: PMC11312408 DOI: 10.1186/s12917-024-04196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Diarrhea is a common issue in domestic yaks (Bos grunniens) that can occur with pasture alterations and significantly impacts growth performance. Previous research has examined the microbiota of diarrhetic yaks; however, the structural changes in gut bacterial community and microbial interactions in yaks with grassland alteration-induced diarrhea remain poorly understood. To explore variations in gut microbiota homeostasis among yaks suffering from diarrhea, fecal microbiota diversity and composition were analyzed using 16 S rRNA amplicon sequencing. Gut fecal microbiota diversity was lower in diarrhetic yaks than in non-diarrhetic yaks. Furthermore, the bacterial community composition (including that of Proteobacteria and Actinobacteria) in the feces of diarrhetic yaks displayed significant alterations. Co-occurrence network analysis further underscored the compromised intestinal flora stability in yaks with diarrhea relative to that in non-diarrhetic yaks. Interestingly, the abundance of beneficial bacteria, such as Lachnospiraceae_AC2044_group and Lachnospiraceae_NK4A136_group, were decreased in yaks with diarrhea, and the reductions were negatively correlated with the fecal water content. Collectively, these findings indicate that diminished microbial stability and increased abundance of certain bacteria in the gut may contribute to diarrhea occurrence in yaks.
Collapse
Affiliation(s)
- Runbo Luo
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China
| | - DanWu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhengzhong Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yupeng Li
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China
| | - Yanan Zhong
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China
| | - Kexin Li
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China
| | - Zhanchun Bai
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China
| | - Gongga
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China
| | - Suolangsizhu
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China.
| |
Collapse
|
5
|
Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX. The Profound Influence of Gut Microbiome and Extracellular Vesicles on Animal Health and Disease. Int J Mol Sci 2024; 25:4024. [PMID: 38612834 PMCID: PMC11012031 DOI: 10.3390/ijms25074024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The animal gut microbiota, comprising a diverse array of microorganisms, plays a pivotal role in shaping host health and physiology. This review explores the intricate dynamics of the gut microbiome in animals, focusing on its composition, function, and impact on host-microbe interactions. The composition of the intestinal microbiota in animals is influenced by the host ecology, including factors such as temperature, pH, oxygen levels, and nutrient availability, as well as genetic makeup, diet, habitat, stressors, and husbandry practices. Dysbiosis can lead to various gastrointestinal and immune-related issues in animals, impacting overall health and productivity. Extracellular vesicles (EVs), particularly exosomes derived from gut microbiota, play a crucial role in intercellular communication, influencing host health by transporting bioactive molecules across barriers like the intestinal and brain barriers. Dysregulation of the gut-brain axis has implications for various disorders in animals, highlighting the potential role of microbiota-derived EVs in disease progression. Therapeutic approaches to modulate gut microbiota, such as probiotics, prebiotics, microbial transplants, and phage therapy, offer promising strategies for enhancing animal health and performance. Studies investigating the effects of phage therapy on gut microbiota composition have shown promising results, with potential implications for improving animal health and food safety in poultry production systems. Understanding the complex interactions between host ecology, gut microbiota, and EVs provides valuable insights into the mechanisms underlying host-microbe interactions and their impact on animal health and productivity. Further research in this field is essential for developing effective therapeutic interventions and management strategies to promote gut health and overall well-being in animals.
Collapse
Affiliation(s)
- Muttiah Barathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| |
Collapse
|
6
|
Li Y, Li X, Nie C, Wu Y, Luo R, Chen C, Niu J, Zhang W. Effects of two strains of Lactobacillus isolated from the feces of calves after fecal microbiota transplantation on growth performance, immune capacity, and intestinal barrier function of weaned calves. Front Microbiol 2023; 14:1249628. [PMID: 37727287 PMCID: PMC10505964 DOI: 10.3389/fmicb.2023.1249628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Weaning stress seriously affects the welfare of calves and causes huge economic losses to the cattle breeding industry. Probiotics play an important role in improving animal growth performance, enhancing immune function, and improving gut microbiota. The newly isolated strains of Lactobacillus reuteri L81 and Lactobacillus johnsonii L29 have shown potential as probiotics. Here, we studied the probiotic properties of these two strains on weaned calves. Methods Forty calves were randomly assigned to four groups before weaning, with 10 calves in each group, control group (Ctrl group), L. reuteri L81 supplementation group (2 g per day per calf), L. johnsonii L29 supplementation group (2 g per day per calf), L. reuteri L81 and L. johnsonii L29 composite group (2 g per day per calf), and the effects of Lactobacillus reuteri L81 and Lactobacillus johnsonii L29 supplementation on growth performance, immune status, antioxidant capacity, and intestinal barrier function of weaned calves were evaluated. Results The results showed that probiotics supplementation increased the average daily weight gain of calves after weaning, reduced weaning diarrhea index (p < 0.05), and increased serum IgA, IgM, and IgG levels (p < 0.05). L. reuteri L81 supplementation significantly decreased IL-6, increased IL-10 and superoxide dismutase (SOD) levels at 21 d after weaning (p < 0.05). Moreover, probiotics supplementation significantly decreased serum endotoxin (ET), diamine oxidase (DAO), and D-lactic acid (D-LA) levels at different time points (p < 0.05). In addition, supplementation with L. reuteri L81 significantly reduced the crypt depth and increased the ratio of villus height to crypt depth (p < 0.05) in the ileum, increased gene expression of tight junction protein ZO-1, Claudin-1 and Occludin in jejunum and ileum mucosa, reduced the gene expression of INF- γ in ileum mucosa and IL-8 in jejunum mucosa, and increased the abundance of beneficial bacteria, including Bifidobacterium, Lactobacillus, Oscillospira, etc. Discussion verall, these results showed that the two strains isolated from cattle feces after low concentration fecal microbiota transplantation improved the growth performance, immune performance, antioxidant capacity, and intestinal barrier function of weaned calves, indicating their potential as supplements to alleviate weaning diarrhea in calves.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xin Li
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yanyan Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Ruiqing Luo
- Xinjiang Tianshan Junken Animal Husbandry Co., Ltd.,Shihezi, China
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Junli Niu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|