1
|
Liu Q, Jia Y, Li Y, Geng S, Yu Y, Wang Z, Wang X, Fu N, Zeng J, Su X, Li H, Wang H. Potential Functions and Transmission Dynamics of Fungi Associated with Anoplophora glabripennis Across Different Life Stages, Between Sexes, and Between Habitats. INSECTS 2025; 16:273. [PMID: 40266779 PMCID: PMC11943397 DOI: 10.3390/insects16030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 04/25/2025]
Abstract
The fungi residing in the gut and associated habitats play a crucial role in the growth and development of Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), a wood-boring pest. Yet, how they are acquired and maintained across generations, and their respective roles throughout the life cycle, remain unknown. To this end, we used high-throughput ITS sequencing analysis to characterize the fungal composition and diversity associated with A. glabripennis across three different life stages, between sexes, and between its habitats. Overall, the fungi composition was stage specific, with adult gut communities being more diverse than those of larvae and eggs. Male fungal communities differed significantly, while frass and female communities were more similar to each other. The top 10 most abundant genera were investigated, with Fusarium consistently observed in all samples and exhibiting the highest overall abundance. Function predictions revealed the presence of potentially beneficial fungi that may support A. glabripennis invasion across all groups. Additionally, we observed complex network structures in the fungal communities associated with eggs and males, and stronger positive correlations in those of eggs and newly hatched larvae. Source tracking analysis suggested that these fungi were vertically transmitted, following a transmission pathway of 'female gut-frass-egg-larval gut', occurring via frass deposited in oviposition sites. Our findings provide a nuanced understanding of the intricate interactions among plants, insects, and fungi, shedding light on the acquisition, maintenance, and roles of gut-associated fungi in A. glabripennis.
Collapse
Affiliation(s)
- Qing Liu
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Yuanting Jia
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Yishuo Li
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Shilong Geng
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Yanqi Yu
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Zhangyan Wang
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Xinru Wang
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Ningning Fu
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Jianyong Zeng
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Forest Germplasm Resources and Protection of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Xiaoyu Su
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Huiping Li
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Hualing Wang
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
2
|
Chen W, Song T, Li D, Chen M, Wang P, Ye J. Effect of dietary Clostridium butyricum supplementation on growth performance, immune function, and intestinal health of hybrid grouper ( Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Front Immunol 2025; 16:1557256. [PMID: 40078994 PMCID: PMC11897522 DOI: 10.3389/fimmu.2025.1557256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction The aim of this study is to investigate the effects of supplementing Clostridium butyricum (C. butyricum) on hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂), with a particular focus on its impact on growth performance, blood composition, intestinal antioxidant capacity, gut microbiota, tight junction protein (ZO-1) expression, and inflammatory gene expression. The study seeks to uncover the potential health benefits of C. butyricum supplementation for hybrid grouper. Methods The experiment included four groups: a control group (CON) and three experimental groups, each supplemented with different strains of C. butyricum (KM, DZN, and CLH), with a concentration of 1 × 10⁷ colony-forming units per gram. These groups were designated as CB1 (KM), CB2 (DZN), and CB3 (CLH). The study evaluated growth performance, blood composition, intestinal antioxidant capacity, gut microbiota, ZO-1 protein expression, and inflammatory gene expression (IL-1β and Ikk-β). Result The results indicated that supplementation with C. butyricum had no significant effect on body weight gain (WG), feed efficiency (FE), or body composition. However, the CB3 group significantly increased the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the intestine, as well as the expression of ZO-1. In addition, the CB3 group significantly increased serum lysozyme (LZM) activity, complement 4 (C4) levels, and immunoglobulin M (IgM) concentration, while significantly reducing the expression of pro-inflammatory genes (IL-1β and Ikk-β). After supplementation with C. butyricum, the level of malondialdehyde (MDA) in the intestine was significantly lower than that in the control group, indicating a reduction in intestinal oxidative stress. Supplementation with C. butyricum also altered the composition of the gut microbiota, promoting the growth of beneficial bacteria and inhibiting pathogenic bacteria, thereby further enhancing ZO-1 expression and intestinal barrier function. Discussion This study suggests that supplementing C. butyricum has a significant immunomodulatory effect on hybrid grouper, enhancing serum immune parameters, alleviating intestinal inflammation and oxidative stress, and promoting intestinal health. Although no significant impact was observed on growth performance, the role of C. butyricum in improving intestinal barrier function and modulating the gut microbiota highlights its potential for enhancing fish health.
Collapse
Affiliation(s)
| | | | | | | | | | - Jidan Ye
- Fisheries College of Jimei University, Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Xiamen, China
| |
Collapse
|
3
|
Echa C, Ekpenyong M, Edeghor U, Ubi D, Edet P, Itam D, Antigha R, Asitok A, Antai S. Saccharification and co-fermentation of lignocellulosic biomass by a cockroach-gut bacterial symbiont and yeast cocktail for bioethanol production. BMC Biotechnol 2024; 24:102. [PMID: 39696229 DOI: 10.1186/s12896-024-00932-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The eco-friendly transformation of agro-industrial wastes through microbial bioconversion could address sustainability challenges in line with the United Nations' Sustainable Development Goals. The bulk of agro-industrial waste consists of lignocellulosic materials with fermentable sugars, predominantly cellulose and hemicellulose. A number of pretreatment options have been employed for material saccharification toward successful fermentation into second-generation bioethanol. Biological and/or enzymatic pretreatment of lignocellulosic waste substrates offers eco-friendly and sustainable second-generation bioethanol production opportunities that may also contribute to waste management without affecting food security. In this study, we isolated a promising filamentous bacterium from the guts of cockroaches with commendable cellulolytic activity. The matrices of sequential statistics, from one-factor-at-a-time (OFAT) through significant variable screening by Placket-Burman design (PBD) to Box‒Behnken design of a surface methodology (BBD-RSM), were employed for major medium variable modeling and optimization by solid-state fermentation. The optimized solutions were used to saccharify lignocellulose in real time, and the kinetics of reducing sugar accumulation were subsequently evaluated to determine the maximum concentration of sugars extracted from the lignocellulose. The hydrolysate with the highest reducing sugar concentration was subjected to fermentation by Saccharomyces cerevisiae, Klyuveromyces marxianus and a mixture of both, after which the ethanol yield, concentration and fermentation efficiency were determined. RESULTS Sequential statistics revealed that rice husk powder, corn cob powder, peptone and inoculum volume were significant variables for the bioprocess at 59.8% (w/w) rice husk powder, 17.8% (w/w) corn cob powder, 38.8% (v/w; 109 cfu/mL) inoculum volume, and 5.3% (w/w) peptone. These conditions mediated maximum cellulolytic and xylanolytic activities of 219.93 ± 18.64 FPU/mL and 333.44 ± 22.74 U/mL, respectively. The kinetics of saccharification of the lignocellulosic waste under optimized conditions revealed two peaks of reducing sugar accumulation between 16 and 32 h and another between 56 and 64 h. CONCLUSIONS Although K. marxianus had a significantly greater fermentation efficiency than S. cerevisiae, fermentation with a 50:50 (% v/v) mixture of both yeasts led to 88.32% fermentation efficiency with 55.56 ± 0.19 g/L crude bioethanol, suggesting that inexpensive, eco-friendly and sustainable bioethanol production could be obtained from renewable energy sources.
Collapse
Affiliation(s)
- Cecilia Echa
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Maurice Ekpenyong
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria.
- University of Calabar Collection of Microorganisms, University of Calabar, Calabar, Nigeria.
| | - Uwamere Edeghor
- Food and Industrial Microbiology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - David Ubi
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Philomena Edet
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Daniel Itam
- Department of Civil Engineering, Faculty of Engineering, University of Calabar, Calabar, Nigeria
| | - Richard Antigha
- Environmental Engineering Unit, Department of Civil Engineering, Faculty of Engineering, University of Cross River State, Calabar, Nigeria
| | - Atim Asitok
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms, University of Calabar, Calabar, Nigeria
| | - Sylvester Antai
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms, University of Calabar, Calabar, Nigeria
| |
Collapse
|
4
|
Qi R, Pei J, Zhou Q, Hao K, Tian Y, Ren L, Luo Y. Comparative Metabolic Defense Responses of Three Tree Species to the Supplemental Feeding Behavior of Anoplophora glabripennis. Int J Mol Sci 2024; 25:12716. [PMID: 39684427 DOI: 10.3390/ijms252312716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Elaeagnus angustifolia L. can attract adult Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky), and kill their offspring by gum secretion in oviposition scars. This plant has the potential to be used as a dead-end trap tree for ALB management. However, there is a limited understanding of the attraction ability and biochemical defense response of E. angustifolia to ALB. In this study, we conducted host selection experiments with ALB and then performed physiological and biochemical assays on twigs from different tree species before and after ALB feeding. We analyzed the differential metabolites using the liquid chromatograph-mass spectrometer method. The results showed that ALB's feeding preference was E. angustifolia > P.× xiaohei var. gansuensis > P. alba var. pyramidalis. After ALB feeding, the content of soluble sugars, soluble proteins, flavonoids, and tannins decreased significantly in all species. In three comparison groups, a total of 492 differential metabolites were identified (E. angustifolia:195, P.× xiaohei var. gansuensis:255, P. alba var. pyramidalis:244). Differential metabolites were divided into overlapping and specific metabolites for analysis. The overlapping differential metabolites 7-isojasmonic acid, zerumbone, and salicin in the twigs of three tree species showed upregulation after ALB feeding. The specific metabolites silibinin, catechin, and geniposide, in E. angustifolia, significantly increased after being damaged. Differential metabolites enriched in KEGG pathways indicated that ALB feeding activated tyrosine metabolism and the biosynthesis of phenylpropanoids in three tree species, with a particularly high enrichment of differential metabolites in the flavonoid biosynthesis pathway in E. angustifolia. This study provides the metabolic defense strategies of different tree species against ALB feeding and proposes candidate metabolites that can serve as metabolic biomarkers, potentially offering valuable insights into using E. angustifolia as a control measure against ALB.
Collapse
Affiliation(s)
- Ruohan Qi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Jiahe Pei
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Quan Zhou
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Keyu Hao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Yi Tian
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
5
|
Schott J, Rakei J, Remus-Emsermann M, Johnston P, Mbedi S, Sparmann S, Hilker M, Paniagua Voirol LR. Microbial associates of the elm leaf beetle: uncovering the absence of resident bacteria and the influence of fungi on insect performance. Appl Environ Microbiol 2024; 90:e0105723. [PMID: 38179921 PMCID: PMC10807431 DOI: 10.1128/aem.01057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/31/2023] [Indexed: 01/06/2024] Open
Abstract
Microbial symbionts play crucial roles in the biology of many insects. While bacteria have been the primary focus of research on insect-microbe symbiosis, recent studies suggest that fungal symbionts may be just as important. The elm leaf beetle (ELB, Xanthogaleruca luteola) is a serious pest species of field elm (Ulmus minor). Using culture-dependent and independent methods, we investigated the abundance and species richness of bacteria and fungi throughout various ELB life stages and generations, while concurrently analyzing microbial communities on elm leaves. No persistent bacterial community was found to be associated with the ELB or elm leaves. By contrast, fungi were persistently present in the beetle's feeding life stages and on elm leaves. Fungal community sequencing revealed a predominance of the genera Penicillium and Aspergillus in insects and on leaves. Culture-dependent surveys showed a high prevalence of two fungal colony morphotypes closely related to Penicillium lanosocoeruleum and Aspergillus flavus. Among these, the Penicillium morphotype was significantly more abundant on feeding-damaged compared with intact leaves, suggesting that the fungus thrives in the presence of the ELB. We assessed whether the detected prevalent fungal morphotypes influenced ELB's performance by rearing insects on (i) surface-sterilized leaves, (ii) leaves inoculated with Penicillium spores, and (iii) leaves inoculated with Aspergillus spores. Insects feeding on Penicillium-inoculated leaves gained more biomass and tended to lay larger egg clutches than those consuming surface-sterilized leaves or Aspergillus-inoculated leaves. Our results demonstrate that the ELB does not harbor resident bacteria and that it might benefit from associating with Penicillium fungi.IMPORTANCEOur study provides insights into the still understudied role of microbial symbionts in the biology of the elm leaf beetle (ELB), a major pest of elms. Contrary to expectations, we found no persistent bacterial symbionts associated with the ELB or elm leaves. Our research thus contributes to the growing body of knowledge that not all insects rely on bacterial symbionts. While no persistent bacterial symbionts were detectable in the ELB and elm leaf samples, our analyses revealed the persistent presence of fungi, particularly Penicillium and Aspergillus on both elm leaves and in the feeding ELB stages. Moreover, when ELB were fed with fungus-treated elm leaves, we detected a potentially beneficial effect of Penicillium on the ELB's development and fecundity. Our results highlight the significance of fungal symbionts in the biology of this insect.
Collapse
Affiliation(s)
- Johanna Schott
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany
| | - Juliette Rakei
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany
| | | | - Paul Johnston
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Susan Mbedi
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Museum für Naturkunde Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Sarah Sparmann
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany
| | | |
Collapse
|
6
|
Wang G, Wang X, Yang Z, Wang S, Li W, Shang S, Luo Y, Wang L. Effects of Fusarium solani on the Growth and Development of Anoplophora glabripennis Larvae. MICROBIAL ECOLOGY 2023; 87:23. [PMID: 38159169 DOI: 10.1007/s00248-023-02332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Anoplophora glabripennis (Asian longhorned beetle) is a wood-boring pest that can inhabit a wide range of healthy deciduous host trees in native and non-native habitats. Lignocellulose degradation plays a major role in the acquisition of nutrients during the growth and development of A. glabripennis larvae. In this study, the lignocellulose degradation capacity of Fusarium solani, a fungal symbiont of A. glabripennis, was investigated in fermentation culture and in four host tree species. The impact of F. solani on larval growth and survival parameters was assessed. Fermentation culture demonstrated continuous and stable production of lignocellulolytic enzymes over the cultivation period. Furthermore, F. solani was able to degrade host tree lignocellulose, as shown by decreased soluble sugar and cellulose contents and an increase in protein content. No significant differences in larval survival were observed in larvae fed with or without F. solani. However, weight and head capsule width were higher in larvae fed on F. solani, and gut lignocellulose activities were elevated in fed larvae. Our results indicate a role for F. solani in the predigestion of lignocellulose during the colonization and parasitic stages of A. glabripennis larval development, and also the F. solani an important symbiotic partner to A. glabripennis, lowering barriers to colonization and development in a range of habitats.
Collapse
Affiliation(s)
- Gaijin Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xuan Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zongji Yang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Senshan Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenxing Li
- Jiayuguan City Forestry and Grassland Administration, Jiayuguan, 735000, Gansu, China
| | - Suqin Shang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
- Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University, Beijing, China
| | - Lixiang Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Wang L, Li C, Luo Y, Wang G, Dou Z, Haq IU, Shang S, Cui M. Current and future control of the wood-boring pest Anoplophora glabripennis. INSECT SCIENCE 2023; 30:1534-1551. [PMID: 36944595 DOI: 10.1111/1744-7917.13187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The Asian longhorn beetle (ALB) Anoplophora glabripennis is one of the most successful and most feared invasive insect species worldwide. This review covers recent research concerning the distribution of and damage caused by ALB, as well as major efforts to control and manage ALB in China. The distribution and destruction range of ALB have continued to expand over the past decade worldwide, and the number of interceptions has remained high. Detection and monitoring methods for the early discovery of ALB have diversified, with advances in semiochemical research and using satellite remote sensing in China. Ecological control of ALB in China involves planting mixtures of preferred and resistant tree species, and this practice can prevent outbreaks. In addition, strategies for chemical and biological control of ALB have achieved promising results during the last decade in China, especially the development of insecticides targeting different stages of ALB, and applying Dastarcus helophoroides and Dendrocopos major as biocontrol agents. Finally, we analyze recommendations for ALB prevention and management strategies based on native range and invasive area research. This information will hopefully help some invaded areas where the target is containment of ALB.
Collapse
Affiliation(s)
- Lixiang Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Chunchun Li
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
- Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing, China
| | - Gaijing Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Zhipeng Dou
- Chinese Academy of Forestry Sciences, Beijing, China
| | - Inzamam Ui Haq
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Suqing Shang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Mingming Cui
- Département des sciences du bois et de la forêt, Université Laval, Québec, QC, Canada
| |
Collapse
|
8
|
Gogoi P, Boruah JLH, Yadav A, Debnath R, Saikia R. Comparative seasonal analysis of Eri silkworm (Samia ricini Donovan) gut composition: implications for lignocellulose degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109198-109213. [PMID: 37768488 DOI: 10.1007/s11356-023-29893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Conversion of biomass such as lignocelluloses to an alternative energy source can contribute to sustainable development. Recently, biomass-degrading enzymes are reported to be common resources in insect-microbe interacting systems. Northeast India harbors ample sericigenous insect resources which are exploited for their silk products. Samia ricini Donovan is an economically important poly-phytophagous silkmoth capable of digesting foliage from different plant species, suggesting the versatility of a robust gut system. Here, a gut bacterial profile was determined by 16S rRNA gene characterization across the holometabolous life cycle during the summer and winter seasons, revealing 3 phyla, 13 families, and 22 genera. Comparative analysis among the seasonal gut isolates revealed a high diversity in summer, predominated by the genus Bacillus due to its high occurrence in all developmental stages. Shannon's diversity index demonstrated the second and fourth instars of summer as well as the fifth instar of winter to be relatively better developmental stages for gut bacteria assembly. Bacterial community shifts in concert to host developmental changes were found to be apparent between early instars and late instars in summer, which differed from those of winter. Forty-three and twenty-nine gut bacterial isolates were found to be cellulolytic and xylanolytic enzyme producers, respectively. The present results illustrate the gut microbiota of S. ricini over the seasons and support the holometabolous life cycle effect as the most likely factor shaping the gut bacterial microbiota. These findings may provide leads for the development of new cleaner and environmentally friendly lignocellulose-degrading enzymes.
Collapse
Affiliation(s)
- Parishmita Gogoi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research, Uttar Pradesh, Kamala Nehru Nagar, Sector 19, Ghaziabad, 201002, India
| | - Jyoti Lakshmi Hati Boruah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Archana Yadav
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Rajal Debnath
- Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, 560035, India
| | - Ratul Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India.
- Academy of Scientific and Innovative Research, Uttar Pradesh, Kamala Nehru Nagar, Sector 19, Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Wang X, Wang H, Zeng J, Cui Z, Geng S, Song X, Zhang F, Su X, Li H. Distinct gut bacterial composition in Anoplophora glabripennis reared on two host plants. Front Microbiol 2023; 14:1199994. [PMID: 37405158 PMCID: PMC10315502 DOI: 10.3389/fmicb.2023.1199994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Anoplophora glabripennis (Coleoptera: Cerambycidae: Lamiinae) is an invasive wood borer pest that has caused considerable damage to forests. Gut bacteria are of great importance in the biology and ecology of herbivores, especially in growth and adaptation; however, change in the gut bacterial community of this pest feeding on different hosts is largely unknown. In this study, we investigated the gut bacterial communities of A. glabripennis larvae fed on different preferred hosts, Salix matsudana and Ulmus pumila, using 16S rDNA high-throughput sequencing technology. A total of 15 phyla, 25 classes, 65 orders, 114 families, 188 genera, and 170 species were annotated in the gut of A. glabripennis larvae fed on S. matsudana or U. pumila using a 97% similarity cutoff level. The dominant phyla were Firmicutes and Proteobacteria and the core dominant genera were Enterococcus, Gibbsiella, Citrobacter, Enterobacter, and Klebsiella. There was significantly higher alpha diversity in the U. pumila group than in the S. matsudana group, and principal co-ordinate analysis showed significant differences in gut bacterial communities between the two groups. The genera with significant abundance differences between the two groups were Gibbsiella, Enterobacter, Leuconostoc, Rhodobacter, TM7a, norank, Rhodobacter, and Aurantisolimonas, indicating that the abundance of larval gut bacteria was affected by feeding on different hosts. Further network diagrams showed that the complexity of the network structure and the modularity were higher in the U. pumila group than in the S. matsudana group, suggesting more diverse gut bacteria in the U. pumila group. The dominant role of most gut microbiota was related to fermentation and chemoheterotrophy, and specific OTUs positively correlated with different functions were reported. Our study provides an essential resource for the gut bacteria functional study of A. glabripennis associated with host diet.
Collapse
Affiliation(s)
- Xuefei Wang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Hualing Wang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Baoding, Hebei, China
| | - Jianyong Zeng
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Key Laboratory of Forest Germplasm Resources and Protection of Hebei Province, Baoding, Hebei, China
| | - Zezhao Cui
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Shilong Geng
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaofei Song
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Fengjuan Zhang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaoyu Su
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Baoding, Hebei, China
| | - Huiping Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Baoding, Hebei, China
| |
Collapse
|
10
|
Lyu F, Hai X, Wang Z. A Review of the Host Plant Location and Recognition Mechanisms of Asian Longhorn Beetle. INSECTS 2023; 14:insects14030292. [PMID: 36975977 PMCID: PMC10054519 DOI: 10.3390/insects14030292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 05/31/2023]
Abstract
The Asian longhorn beetle (ALB), Anoplophora glabripennis Motschulsky, is a polyphagous xylophage with dozens of reported host tree species. However, the mechanisms by which individuals locate and recognize host plants are still unknown. We summarize the current knowledge of the host plant list, host kairomones, odorant-binding proteins (OBPs) and microbial symbionts of this beetle and their practical applications, and finally discuss the host localization and recognition mechanisms. A total of 209 species (or cultivars) were reported as ALB host plants, including 101 species of higher sensitivity; host kairomones were preferentially bound to ALB recombinant OBPs, including cis-3-hexen-1-ol, δ-3-carene, nonanal, linalool, and β-caryophyllene. In addition, microbial symbionts may help ALB degrade their host. Complementarity of tree species with different levels of resistance may reduce damage, but trapping effectiveness for adults was limited using a combination of host kairomones and sex pheromones in the field. Therefore, we discuss host location behavior from a new perspective and show that multiple cues are used by ALB to locate and recognize host plants. Further research into host resistance mechanisms and visual signal recognition, and the interaction of sex pheromone synthesis, symbiont microbiota, and host plants may help reveal the host recognition mechanisms of ALBs.
Collapse
Affiliation(s)
- Fei Lyu
- Correspondence: (F.L.); (Z.W.); Tel.: +86-03127520216 (F.L.)
| | | | - Zhigang Wang
- Correspondence: (F.L.); (Z.W.); Tel.: +86-03127520216 (F.L.)
| |
Collapse
|