1
|
Shi Z, Li Y, Shi W, Mu Z, Han Q, Zhang W. Glutamicibacter sp. ZY1 antagonizes pathogenic Vibrio parahaemolyticus via iron competition. Appl Environ Microbiol 2025; 91:e0000925. [PMID: 40272177 DOI: 10.1128/aem.00009-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/19/2025] [Indexed: 04/25/2025] Open
Abstract
Probiotics are prior agents for treating bacterial infection with advantages of inhibiting pathogenic bacteria and improving immune responses of hosts, thus increasing the survival rate of cultured animals. In this study, one Vibrio parahaemolyticus YDE17 pathogenic to shrimp and its antagonist Glutamicibacter sp. ZY1 were screened, and ZY1 showed stable inhibitory effects on diverse Vibrio spp., especially V. parahaemolyticus. ZY1 secreted inhibitory substances into supernatant, and the activity of inhibitory substances did not change after being treated under different temperatures, proteinase K, and pH (6-10), which indicated that the inhibitory substances might be small molecules, which led us to trace the siderophore production. The siderophore production of YDE17 co-incubated with the cell-free supernatant of ZY1 was greater than that of YDE17 alone, which indicated that the cell-free supernatant of ZY1 created iron-limiting conditions for YDE17. This finding was confirmed by iron supplementation assays, in which the inhibitory activity of the cell-free supernatant of ZY1 on YDE17 as well as the siderophore production of YDE17 decreased in the presence of FeCl3. The effect of iron on inhibition was further confirmed by in vivo infection. The relative percent survival of ZY1 to shrimp challenged by YDE17 was 83.3%, but the survival rates of shrimp challenged with YDE17/ZY1/FeCl3 were similar to that of YDE17, both of which were significantly lower than the 70% survival rate of shrimps simultaneously challenged by ZY1/YDE17. Our study offers a new probiotic resource to control vibriosis, which works through iron competition with the opportunistic pathogens of Vibrio spp.IMPORTANCEBacteria belonging to Vibrio spp., especially Vibrio parahaemolyticus, are important opportunistic pathogens infecting a wide range of hosts including fish, shrimp, shellfish, and crab. Antibiotics are effective but show the disadvantages of antibiotic generation, microecology destruction, and biological toxicology; thus, new treatments of Vibrio infection are urgently recommended. In our present study, Glutamicibacter sp. ZY1, belonging to the phylum Actinomycetes, was selected and showed high inhibitory activity to inhibit V. parahaemolyticus pathogenic to shrimp. Glutamicibacter sp. ZY1 antagonized V. parahaemolyticus YDE17 through producing siderophore to compete for iron, based on the results of both in vitro and in vivo experiments under different iron levels. This study offers a new strategy to control Vibrio infection in aquaculture.
Collapse
Affiliation(s)
- Zhili Shi
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Ya Li
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Weibo Shi
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Zhixin Mu
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Qingxi Han
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Qin X, Chen L, Zhao J, Zhang W, Tian H, Bi S, Jin G, Zhou Y, Zhu Q, Cheng Y, Liu Y. Crosslinked protein-polysaccharide nanocomposite coating for pork preservation: Impact on physicochemical properties and microbial structure. Food Chem 2025; 470:142721. [PMID: 39871437 DOI: 10.1016/j.foodchem.2024.142721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/02/2024] [Accepted: 12/29/2024] [Indexed: 01/29/2025]
Abstract
Edible films are significant in prolonging the shelf life of meat products. Herein, we prepared some edible coatings (EW/TNPCSs) based on egg white/chitosan/pectin as polymer matrix, containing tannic acid-nisin composite nano-crosslinker with antibacterial-antioxidant activities. The results of preservation indicated that the prepared EW/TNPCSs reduced the water loss of chilled pork and delayed the changes of taste, texture and surface color. At the end of the 12-day storage period, the content of TVB-N and carbonyl as well as the pH of EW/TNPCS5 chilled pork decreased by 33.75 %, 96.61 % and 7.09 %, respectively, and colony count decreased by 17.71 % compared to the control. Additionally, EW/TNPCSs inhibited the richness and diversity of spoilage dominant bacteria (Myroides, Acinetobacter, etc.), which were positively regulated by physicochemical indicators such as saltiness and abundance of bacteriostatic materials-coated chilled pork. It will provide a practical basis for the application of EW/TNPCSs coatings in the preservation of chilled pork.
Collapse
Affiliation(s)
- Xianmin Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Linqin Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Jingjing Zhao
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Wenxin Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Haimiao Tian
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Shenghui Bi
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Guofeng Jin
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Yuxin Cheng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China.
| | - Yuanyuan Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
3
|
Dantan L, Carcassonne P, Degrémont L, Morga B, Travers MA, Petton B, Mege M, Maurouard E, Allienne JF, Courtay G, Romatif O, Pouzadoux J, Lami R, Intertaglia L, Gueguen Y, Vidal-Dupiol J, Toulza E, Cosseau C. Microbial education plays a crucial role in harnessing the beneficial properties of microbiota for infectious disease protection in Crassostrea gigas. Sci Rep 2024; 14:26914. [PMID: 39505929 PMCID: PMC11541537 DOI: 10.1038/s41598-024-76096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
The increase in marine diseases, particularly in economically important mollusks, is a growing concern. Among them, the Pacific oyster (Crassostrea gigas) production faces challenges from several diseases, such as the Pacific Oyster Mortality Syndrome (POMS) or vibriosis. The microbial education, which consists of exposing the host immune system to beneficial microorganisms during early life stages is a promising approach against diseases. This study explores the concept of microbial education using controlled and pathogen-free bacterial communities and assesses its protective effects against POMS and Vibrio aestuarianus infections, highlighting potential applications in oyster production. We demonstrate that it is possible to educate the oyster immune system by adding microorganisms during the larval stage. Adding culture based bacterial mixes to larvae protects only against the POMS disease while adding whole microbial communities from oyster donors protects against both POMS and vibriosis. The efficiency of immune protection depends both on oyster origin and on the composition of the bacterial mixes used for exposure. No preferential protection was observed when the oysters were stimulated with their sympatric strains. Furthermore, the added bacteria were not maintained into the oyster microbiota, but this bacterial addition induced long term changes in the microbiota composition and oyster immune gene expression. Our study reveals successful immune system education of oysters by introducing beneficial microorganisms during the larval stage. We improved the long-term resistance of oysters against critical diseases (POMS disease and Vibrio aestuarianus infections) highlighting the potential of microbial education in aquaculture.
Collapse
Grants
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-10-LABX-41 Laboratoires d'Excellences (LABEX): TULIP
- ANR-10-LABX-41 Laboratoires d'Excellences (LABEX): TULIP
- ANR-10-LABX-41 Laboratoires d'Excellences (LABEX): TULIP
- ANR-10-LABX-41 Laboratoires d'Excellences (LABEX): TULIP
- ANR-10-LABX-41 Laboratoires d'Excellences (LABEX): TULIP
- ANR-10-LABX-41 Laboratoires d'Excellences (LABEX): TULIP
- ANR-10-LABX-41 Laboratoires d'Excellences (LABEX): TULIP
- ANR-10-LABX-41 Laboratoires d'Excellences (LABEX): TULIP
- ANR-10-LABX-41 Laboratoires d'Excellences (LABEX): TULIP
- ANR-10-LABX-41 Laboratoires d'Excellences (LABEX): TULIP
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- Ifremer project GT-huitre
- project “Microval” of the Bonus Qualité Recherche program of the University of Perpignan
- project “gigantimic 1” from the federation de recherche of the University of Perpignan
- project “gigantimic 2” from the Kim Food and health foundation of MUSE
- Laboratoires d’Excellences (LABEX): TULIP
- Laboratoires d’Excellences (LABEX): CEMEB
- PhD grant from the Region Occitanie (Probiomic project)
- University of Perpignan Via Domitia Graduate School ED305
Collapse
Affiliation(s)
- Luc Dantan
- IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, France.
| | - Prunelle Carcassonne
- IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, France
| | | | | | - Marie-Agnès Travers
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Bruno Petton
- Univ Brest, CNRS, IRD, LEMAR, Ifremer, Plouzané, F-29280, France
| | | | | | | | - Gaëlle Courtay
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Océane Romatif
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Juliette Pouzadoux
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Raphaël Lami
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, Sorbonne Université, CNRS, Observatoire Océanologique de Banyuls-sur-Mer, Avenue Pierre Fabre, Banyuls-sur- Mer, 66650, France
| | - Laurent Intertaglia
- Sorbonne Université, CNRS, Fédération de Recherche, Observatoire Océanologique de Banyuls-sur-Mer, Banyuls-sur-Mer, 66650, France
| | | | - Jeremie Vidal-Dupiol
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Eve Toulza
- IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, France
| | - Céline Cosseau
- IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, France.
| |
Collapse
|
4
|
Dong WJ, Xu MD, Yang XW, Yang XM, Long XZ, Han XY, Cui LY, Tong Q. Rice straw ash and amphibian health: A deep dive into microbiota changes and potential ecological consequences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171651. [PMID: 38490417 DOI: 10.1016/j.scitotenv.2024.171651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Rice straw is burned as a result of agricultural practices and technical limitations, generating significant volumes of ash that might have environmental and ecological consequences; however, the effects on organisms have not been researched. Amphibians depend on their gut and skin microbiomes. Ash exposure may cause inflammation and changes in microbial diversity and function in frogs' skin and gut microbiota due to its chemical composition and physical presence, but the implications remain unclear. Rana dybowskii were exposed to five aqueous extracts of ashes (AEA) concentrations for 30 days to study survival, metal concentrations, and microbial diversity, analyzing the microbiota of the cutaneous and gut microbiota using Illumina sequencing. Dominant elements in ash: K > Ca > Mg > Na > Al > Fe. In AEA, K > Na > Ca > Mg > As > Cu. Increased AEA concentrations significantly reduced frog survival. Skin microbiota alpha diversity varied significantly among all treatment groups, but not gut microbiota. Skin microbiota differed significantly across treatments via Bray-Curtis and weighted UniFrac; gut microbiota was only affected by Bray-Curtis. Skin microbiota varied significantly with AEA levels in Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes, while the gut microbiota's dominant phyla, Firmicutes, Bacteroidetes, and Proteobacteria, remained consistent across all groups. Lastly, the functional prediction showed that the skin microbiota had big differences in how it worked and looked, which were linked to different health and environmental adaptation pathways. The gut microbiota, on the other hand, had smaller differences. In conclusion, AEA exposure affects R. dybowskii survival and skin microbiota diversity, indicating potential health and ecological impacts, with less effect on gut microbiota.
Collapse
Affiliation(s)
- Wen-Jing Dong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Ming-da Xu
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xue-Wen Yang
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xiu-Mei Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Zhou Long
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xiao-Yun Han
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Li-Yong Cui
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Qing Tong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Contente D, Díaz-Formoso L, Feito J, Gómez-Sala B, Costas D, Hernández PE, Muñoz-Atienza E, Borrero J, Poeta P, Cintas LM. Antimicrobial Activity, Genetic Relatedness, and Safety Assessment of Potential Probiotic Lactic Acid Bacteria Isolated from a Rearing Tank of Rotifers ( Brachionus plicatilis) Used as Live Feed in Fish Larviculture. Animals (Basel) 2024; 14:1415. [PMID: 38791633 PMCID: PMC11117289 DOI: 10.3390/ani14101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Aquaculture is a rapidly expanding agri-food industry that faces substantial economic losses due to infectious disease outbreaks, such as bacterial infections. These outbreaks cause disruptions and high mortalities at various stages of the rearing process, especially in the larval stages. Probiotic bacteria are emerging as promising and sustainable alternative or complementary strategies to vaccination and the use of antibiotics in aquaculture. In this study, potential probiotic candidates for larviculture were isolated from a rotifer-rearing tank used as the first live feed for turbot larvae. Two Lacticaseibacillus paracasei and two Lactiplantibacillus plantarum isolates were selected for further characterization due to their wide and strong antimicrobial activity against several ichthyopathogens, both Gram-positive and Gram-negative. An extensive in vitro safety assessment of these four isolates revealed the absence of harmful traits, such as acquired antimicrobial resistance and other virulence factors (i.e., hemolytic and gelatinase activities, bile salt deconjugation, and mucin degradation, as well as PCR detection of biogenic amine production). Moreover, Enterobacterial Repetitive Intergenic Consensus-PCR (ERIC-PCR) analyses unveiled their genetic relatedness, revealing two divergent clusters within each species. To our knowledge, this work reports for the first time the isolation and characterization of Lactic Acid Bacteria (LAB) with potential use as probiotics in aquaculture from rotifer-rearing tanks, which have the potential to optimize turbot larviculture and to introduce novel microbial management approaches for a sustainable aquaculture.
Collapse
Affiliation(s)
- Diogo Contente
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Lara Díaz-Formoso
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Beatriz Gómez-Sala
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- Teagasc Food Research Centre, Moorepark, R93 XE12 Cork, Ireland
| | - Damián Costas
- Centro de Investigación Mariña, Universidade de Vigo, Centro de Investigación Mariña (ECIMAT), 36331 Vigo, Spain;
| | - Pablo E. Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Juan Borrero
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- CECAV-Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| |
Collapse
|
6
|
Knobloch S, Skirnisdóttir S, Dubois M, Mayolle L, Kolypczuk L, Leroi F, Leeper A, Passerini D, Marteinsson VÞ. The gut microbiome of farmed Arctic char ( Salvelinus alpinus) is shaped by feeding stage and nutrient presence. FEMS MICROBES 2024; 5:xtae011. [PMID: 38745980 PMCID: PMC11092275 DOI: 10.1093/femsmc/xtae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiome plays an important role in maintaining health and productivity of farmed fish. However, the functional role of most gut microorganisms remains unknown. Identifying the stable members of the gut microbiota and understanding their functional roles could aid in the selection of positive traits or act as a proxy for fish health in aquaculture. Here, we analyse the gut microbial community of farmed juvenile Arctic char (Salvelinus alpinus) and reconstruct the metabolic potential of its main symbionts. The gut microbiota of Arctic char undergoes a succession in community composition during the first weeks post-hatch, with a decrease in Shannon diversity and the establishment of three dominant bacterial taxa. The genome of the most abundant bacterium, a Mycoplasma sp., shows adaptation to rapid growth in the nutrient-rich gut environment. The second most abundant taxon, a Brevinema sp., has versatile metabolic potential, including genes involved in host mucin degradation and utilization. However, during periods of absent gut content, a Ruminococcaceae bacterium becomes dominant, possibly outgrowing all other bacteria through the production of secondary metabolites involved in quorum sensing and cross-inhibition while benefiting the host through short-chain fatty acid production. Whereas Mycoplasma is often present as a symbiont in farmed salmonids, we show that the Ruminococcaceae species is also detected in wild Arctic char, suggesting a close evolutionary relationship between the host and this symbiotic bacterium.
Collapse
Affiliation(s)
- Stephen Knobloch
- Matís ohf., Microbiology Research Group, Vínlandsleið 12, 113 Reykjavík, Iceland
- Department of Food Technology, University of Applied Sciences Fulda, Leipziger Strasse 123, 36037 Fulda, Germany
| | | | - Marianne Dubois
- ESBS/University of Strasbourg, 300 Bd Sébastien Brant, 67085 Strasbourg, France
| | - Lucie Mayolle
- University of Technology of Compiègne, Rue Roger Couttolenc, 60203 Compiègne, France
| | - Laetitia Kolypczuk
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, BP 21105, F-44000 Nantes, France
| | - Françoise Leroi
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, BP 21105, F-44000 Nantes, France
| | - Alexandra Leeper
- Matís ohf., Microbiology Research Group, Vínlandsleið 12, 113 Reykjavík, Iceland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Arboretveien 6, 1430 Ås, Norway
- Iceland Ocean Cluster, Department of Research and Innovation, Grandagarður 16, 101 Reykjavík, Iceland
| | - Delphine Passerini
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, BP 21105, F-44000 Nantes, France
| | - Viggó Þ Marteinsson
- Matís ohf., Microbiology Research Group, Vínlandsleið 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Sæmundargata 2, 101 Reykjavik, Iceland
| |
Collapse
|
7
|
Ruiz A, Scicchitano D, Palladino G, Nanetti E, Candela M, Furones D, Sanahuja I, Carbó R, Gisbert E, Andree KB. Microbiome study of a coupled aquaponic system: unveiling the independency of bacterial communities and their beneficial influences among different compartments. Sci Rep 2023; 13:19704. [PMID: 37952071 PMCID: PMC10640640 DOI: 10.1038/s41598-023-47081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
To understand the microbiome composition and interplay among bacterial communities in different compartments of a coupled freshwater aquaponics system growing flathead grey mullet (Mugil cephalus) and lettuces (Lactuca sativa), 16S rRNA gene amplicon sequencing of the V3-V4 region was analysed from each compartment (fish intestine, water from the sedimentation tank, bioballs from the biological filter, water and biofilm from the hydroponic unit, and lettuce roots). The bacterial communities of each sample group showed a stable diversity during all the trial, except for the fish gut microbiota, which displayed lower alpha diversity values. Regarding beta diversity, the structure of bacterial communities belonging to the biofilm adhering to the hydroponic tank walls, bioballs, and lettuce roots resembled each other (weighted and unweighted UniFrac distances), while bacteria from water samples also clustered together. However, both of the above-mentioned bacterial communities did not resemble those of fish gut. We found a low or almost null number of shared Amplicon Sequence Variants (ASVs) among sampled groups which indicated that each compartment worked as an independent microbiome. Regarding fish health and food safety, the microbiome profile did not reveal neither fish pathogens nor bacterial species potentially pathogenic for food health, highlighting the safety of this sustainable food production system.
Collapse
Affiliation(s)
- Alberto Ruiz
- Aquaculture Program, Institute for Research and Technology in Agroalimentaries (IRTA), Ctra. Poble Nou. Km 5.5, 43540, Ràpita, Spain
| | - Daniel Scicchitano
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
| | - Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
| | - Enrico Nanetti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
| | - Dolors Furones
- Aquaculture Program, Institute for Research and Technology in Agroalimentaries (IRTA), Ctra. Poble Nou. Km 5.5, 43540, Ràpita, Spain
| | - Ignasi Sanahuja
- Aquaculture Program, Institute for Research and Technology in Agroalimentaries (IRTA), Ctra. Poble Nou. Km 5.5, 43540, Ràpita, Spain
| | - Ricard Carbó
- Aquaculture Program, Institute for Research and Technology in Agroalimentaries (IRTA), Ctra. Poble Nou. Km 5.5, 43540, Ràpita, Spain
| | - Enric Gisbert
- Aquaculture Program, Institute for Research and Technology in Agroalimentaries (IRTA), Ctra. Poble Nou. Km 5.5, 43540, Ràpita, Spain.
| | - Karl B Andree
- Aquaculture Program, Institute for Research and Technology in Agroalimentaries (IRTA), Ctra. Poble Nou. Km 5.5, 43540, Ràpita, Spain
| |
Collapse
|
8
|
Leeper A, Sauphar C, Berlizot B, Ladurée G, Koppe W, Knobloch S, Skírnisdóttir S, Björnsdóttir R, Øverland M, Benhaïm D. Enhancement of Soybean Meal Alters Gut Microbiome and Influences Behavior of Farmed Atlantic Salmon ( Salmo salar). Animals (Basel) 2023; 13:2591. [PMID: 37627382 PMCID: PMC10451335 DOI: 10.3390/ani13162591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Atlantic salmon (Salmo salar) is one of the worlds most domesticated fish. As production volumes increase, access to high quality and sustainable protein sources for formulated feeds of this carnivorous fish is required. Soybean meal (SBM) and soy-derived proteins are the dominant protein sources in commercial aquafeeds due to their low-cost, availability and favorable amino acid profile. However, for Atlantic salmon, the inclusion of soybean meal (SBM), and soy protein concentrate (SPC) in certain combinations can impact gut health, which has consequences for immunity and welfare, limiting the use of soy products in salmonid feeds. This study sought to address this challenge by evaluating two gut health-targeted enhancements of SBM for inclusion in freshwater phase salmon diets: enzyme pre-treatment (ETS), and addition of fructose oligosaccharide (USP). These were compared with untreated soybean meal (US) and fish meal (FM). This study took a multi-disciplinary approach, investigating the effect on growth performance, gut microbiome, and behaviors relevant to welfare in aquaculture. This study suggests that both enhancements of SBM provide benefits for growth performance compared with conventional SBM. Both SBM treatments altered fish gut microbiomes and in the case of ETS, increased the presence of the lactic acid bacteria Enterococcus. For the first time, the effects of marine protein sources and plant protein sources on the coping style of salmon were demonstrated. Fish fed SBM showed a tendency for more reactive behavior compared with those fed the FM-based control. All fish had a similar low response to elicited stress, although ETS-fed fish responded more actively than US-fed fish for a single swimming measure. Furthermore, SBM-fed fish displayed lower repeatability of behavior, which may indicate diminished welfare for intensively farmed fish. The implications of these findings for commercial salmonid aquaculture are discussed.
Collapse
Affiliation(s)
- Alexandra Leeper
- Department of Research and Innovation, Iceland Ocean Cluster, Grandagardur 16, 101 Reykjavik, Iceland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1420 Aas, Norway
- Department of Research and Innovation, Matís Ltd., 12, Vínlandsleid, 113 Reykjavik, Iceland
| | - Clara Sauphar
- Department of Research and Innovation, Matís Ltd., 12, Vínlandsleid, 113 Reykjavik, Iceland
- Department of Aquaculture and Fish Biology, Hólar University, 551 Hólar, Iceland
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, 6025 Ålesund, Norway
| | - Benoit Berlizot
- Department of Aquaculture and Fish Biology, Hólar University, 551 Hólar, Iceland
| | - Gabrielle Ladurée
- Department of Aquaculture and Fish Biology, Hólar University, 551 Hólar, Iceland
| | - Wolfgang Koppe
- Department of Research and Innovation, Matís Ltd., 12, Vínlandsleid, 113 Reykjavik, Iceland
| | - Stephen Knobloch
- Department of Research and Innovation, Matís Ltd., 12, Vínlandsleid, 113 Reykjavik, Iceland
- Department of Food Technology, Fulda University of Applied Sciences, 36037 Fulda, Germany
| | | | - Rannveig Björnsdóttir
- Faculty of Natural Resource Sciences, University of Akureyi, Nordurslod, 600 Akureyi, Iceland
| | - Margareth Øverland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1420 Aas, Norway
| | - David Benhaïm
- Department of Aquaculture and Fish Biology, Hólar University, 551 Hólar, Iceland
| |
Collapse
|