1
|
Caille A, Connan C, Lyon Belgy N, Borezée E, Cherbuy C, Meunier N, Meslier V. Positive nutritional selection of adults with healthy lifestyle and high daily fiber consumption for the isolation of beneficial intestinal bacteria: The iTARGET cohort study protocol. MethodsX 2025; 14:103268. [PMID: 40224142 PMCID: PMC11987684 DOI: 10.1016/j.mex.2025.103268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Recent advances in the study of the gut microbiota has pointed to its under-utilized source of potentially beneficial bacteria, known as next generation probiotics, offering a promising avenue to restore or compensate impaired gut microbiota toward a healthy state. Aside from the difficulties to achieve in-lab adequate culture conditions, the use of beneficial bacterial isolates is also limited by their bioavailability in the donor itself. In the iTARGET study, we positively selected donors based on their diet enriched in fiber, that has been shown to increase the prevalence of bacterial species associated with health. The iTARGET study is a monocenter, prospective, observational study of adults with healthy lifestyle and high daily fiber consumption. We aim to recruit individuals in two phases, the first one for all individuals that will permit the identification of carriers for bacteria of interest and the second phase for a subset of individuals to allow for culture and isolation of previously identified potentially beneficial bacteria. Our primary outcome is the isolation and culture of at least one potentially beneficial isolate. The secondary outcomes comprised the high throughput metagenomic profiles of the intestinal microbiota and the characterization of the cultured isolates. The study was approved by the French Research Ethics Committees (Comité de Protection des Personnes Sud-Est I) under the National reference ID 2023-A01677-38. Study findings and results will be published in peer-reviewed Open Access journals. (Trial registration number on ClinicalTrials.gov: NCT06166810).
Collapse
Affiliation(s)
- Aurélie Caille
- Centre Hospitalier Universitaire de Clermont-Ferrand, CRNH Auvergne, Clermont-Ferrand, France
| | - Chloé Connan
- Université Paris-Saclay, INRAE, MetaGenoPolis, 78350 Jouy-en-Josas, France
| | - Noelle Lyon Belgy
- Centre Hospitalier Universitaire de Clermont-Ferrand, CRNH Auvergne, Clermont-Ferrand, France
| | - Elise Borezée
- Université Paris-Saclay, INRAE, MetaGenoPolis, 78350 Jouy-en-Josas, France
| | - Claire Cherbuy
- Université Paris-Saclay, INRAE, Micalis, 78350 Jouy-en-Josas, France
| | - Nathalie Meunier
- Centre Hospitalier Universitaire de Clermont-Ferrand, CRNH Auvergne, Clermont-Ferrand, France
| | - Victoria Meslier
- Université Paris-Saclay, INRAE, MetaGenoPolis, 78350 Jouy-en-Josas, France
| |
Collapse
|
2
|
杨 洋, 王 凯, 柳 鉴, 周 志, 贾 雯, 吴 思, 李 金, 何 方, 程 如. [Early life Bifidobacterium bifidum BD-1 intervention alleviates hyperactivity of juvenile female rats with attention deficit hyperactivity disorder]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2025; 45:702-710. [PMID: 40294919 PMCID: PMC12037284 DOI: 10.12122/j.issn.1673-4254.2025.04.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Indexed: 04/30/2025]
Abstract
OBJECTIVES To investigate the effects of early life intervention with Bifidobacterium bifidum BD-1 (B. bifidum BD-1) on hyperactivity in a female mouse model of attention deficit hyperactivity disorder (ADHD) and explore the underlying mechanisms. METHODS Eight newborn female Wistar-Kyoto (WKY) rats and 6 spontaneous hypertensive rats (SHRs) were gavaged with saline and another 6 SHRs were gavaged with B. bifidum BD-1 (109 CFU) daily for 3 weeks. Open field test of the rats was conducted at 7 weeks, and fecal samples were collected at weaning (3 weeks) and at 7 weeks for 16S rRNA sequencing. Immunofluorescent staining was used to detect dopamine transporter (DAT) and tyrosine hydroxylase (Th) levels in the striatum and activated microglia in the prefrontal cortex. Treg cells in the mesenteric lymph nodes, spleen and blood were analyzed using flow cytometry. RESULTS The SHRs traveled a significantly greater distance in open fields test than WKY rats, and this behavior was significantly attenuated by B. bifidum BD-1 intervention. The expression of DAT and Th in the striatum was significantly lower in the SHRs than in WKY rats, while B. bifidum BD-1 treatment obviously increased Th levels in the SHRs. B. bifidum BD-1 intervention significantly deceased the number of activated microglia and increased Treg cell counts in the spleen of SHRs. The treatment also enhanced α diversity in gut microbiota of the SHRs and resulted in a decreased Firmicutes/Bacteroidota ratio, more active Muribaculaceae growth, and suppression of Clostridia_UCG-014 proliferation. CONCLUSIONS Early life intervention with B. bifidum BD-1 alleviates hyperactivity in female SHRs by modulating the gut microbiota and peripheral immune response, suppressing neuroinflammation and improving dopaminergic system function. These findings provide evidence for early prevention strategies and support the development and application of psychobiotics for ADHD.
Collapse
|
3
|
Cai Y, Huang Y, Wang Y, Lin C, Qiu L, Wei H. Lactobacillus johnsonii GLJ001 prevents DSS-induced colitis in mice by inhibiting M1 macrophage polarization via gut microbiota-SCFAs axis. Int Immunopharmacol 2025; 144:113671. [PMID: 39615110 DOI: 10.1016/j.intimp.2024.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 12/15/2024]
Abstract
Inflammatory Bowel Disease (IBD) is increasing worldwide and has become a global emergent disease. Probiotics have been reported to be effective in relieving colitis. Previous studies found ripened Pu-erh tea (RPT) promoted gut microbiota resilience against dextran sulfate sodium (DSS)-induced colitis in mice by increasing relative abundance of Lactobacillus. However, whether and how it alleviated DSS-induced colitis in mice need to be explored. Here, we screened a probiotic Lactobacillus johnsonii GLJ001 from feces of ripened Pu-erh tea (RPT)-administrated mice. In this study, L. johnsonii GLJ001 attenuated symptoms of DSS-induced colitis in mice, including weight loss, increased disease activity index (DAI), colon shortening and colon tissue damage, as well as high expression of inflammatory cytokines and disturbances of intestine barrier function. Furthermore, abundances of short-chain fatty acids (SCFAs)-producing bacteria (i.e. Clostridium cluster IV and XIVa, Lachnospiracea_incertae_sedis and Ruminococcus) were enhanced in the cecum of mice treated with L. johnsonii GLJ001, accompanying by an increase of SCFAs. It was also found that SCFAs inhibited mRNA expression of M1 macrophage markers (Inos and CD86), inflammatory cytokines (TNF-α and Il-1β) and SCFAs receptors (Gpr41 and Gpr43) induced by lipopolysaccharide (LPS) and interferon-γ (IFN-γ) in THP-1 cell line. Collectively, L. johnsonii GLJ001 prevented DSS-induced colitis in mice by inhibiting M1 macrophage polarization via gut microbiota-SCFAs axis, and can be administered for management of colitis.
Collapse
Affiliation(s)
- Yunjie Cai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Yina Huang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Cuiyao Lin
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Liang Qiu
- Centre for Translational Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, People's Republic of China.
| | - Hua Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China.
| |
Collapse
|
4
|
Wang S, Li J, Liu WH, Li N, Liang H, Hung W, Jiang Q, Cheng R, Shen X, He F. Lacticaseibacillus paracasei K56 inhibits lipid accumulation in adipocytes by promoting lipolysis. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:3511-3521. [DOI: 10.26599/fshw.2023.9250034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Bocchio F, Mancabelli L, Milani C, Lugli GA, Tarracchini C, Longhi G, Conto FD, Turroni F, Ventura M. Compendium of Bifidobacterium-based probiotics: characteristics and therapeutic impact on human diseases. MICROBIOME RESEARCH REPORTS 2024; 4:2. [PMID: 40207278 PMCID: PMC11977362 DOI: 10.20517/mrr.2024.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 04/11/2025]
Abstract
The human microbiota, a complex community of microorganisms residing in and on the human body, plays a crucial role in maintaining health and preventing disease. Bifidobacterium species have shown remarkable therapeutic potential across a range of health conditions, thus being considered optimal probiotic bacteria. This review provides insights into the concept of probiotics and explores the impact of bifidobacteria on human health, focusing on the gastrointestinal, respiratory, skeletal, muscular, and nervous systems. It also integrates information on the available genetic bases underlying the beneficial effects of each bifidobacterial probiotic species on different aspects of human physiology. Notably, Bifidobacterium-based probiotics have proven effective in managing gastrointestinal conditions such as constipation, antibiotic-associated diarrhea, irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and Helicobacter pylori infections. These benefits are achieved by modulating the intestinal microbiota, boosting immune responses, and strengthening the gut barrier. Moreover, Bifidobacterium species have been reported to reduce respiratory infections and asthma severity. Additionally, these probiotic bacteria offer benefits for skeletal and muscular health, as evidenced by Bifidobacterium adolescentis and Bifidobacterium breve, which have shown anti-inflammatory effects and symptom relief in arthritis models, suggesting potential in treating conditions like rheumatoid arthritis. Furthermore, probiotic therapies based on bifidobacterial species have shown promising effects in alleviating anxiety and depression, reducing stress, and enhancing cognitive function. Overall, this review integrates the extensive scientific literature now available that supports the health-promoting applications of probiotic Bifidobacterium species and underscores the need for further research to confirm their clinical efficacy across different body systems.
Collapse
Affiliation(s)
- Fabiana Bocchio
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
- Authors contributed equally
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Authors contributed equally
| | - Christian Milani
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Gabriele Andrea Lugli
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Flora De Conto
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
| | - Francesca Turroni
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Marco Ventura
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| |
Collapse
|
6
|
Ignacio A, Czyz S, McCoy KD. Early life microbiome influences on development of the mucosal innate immune system. Semin Immunol 2024; 73:101885. [PMID: 38788491 DOI: 10.1016/j.smim.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
The gut microbiota is well known to possess immunomodulatory capacities, influencing a multitude of cellular signalling pathways to maintain host homeostasis. Although the formation of the immune system initiates before birth in a sterile environment, an emerging body of literature indicates that the neonatal immune system is influenced by a first wave of external stimuli that includes signals from the maternal microbiota. A second wave of stimulus begins after birth and must be tightly regulated during the neonatal period when colonization of the host occurs concomitantly with the maturation of the immune system, requiring a fine adjustment between establishing tolerance towards the commensal microbiota and preserving inflammatory responses against pathogenic invaders. Besides integrating cues from commensal microbes, the neonatal immune system must also regulate responses triggered by other environmental signals, such as dietary antigens, which become more complex with the introduction of solid food during the weaning period. This "window of opportunity" in early life is thought to be crucial for the proper development of the immune system, setting the tone of subsequent immune responses in adulthood and modulating the risk of developing chronic and metabolic inflammatory diseases. Here we review the importance of host-microbiota interactions for the development and maturation of the immune system, particularly in the early-life period, highlighting the known mechanisms involved in such communication. This discussion is focused on recent data demonstrating microbiota-mediated education of innate immune cells and its role in the development of lymphoid tissues.
Collapse
Affiliation(s)
- Aline Ignacio
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sonia Czyz
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
7
|
Zhu M, Song Y, Xu Y, Xu H. Manipulating Microbiota in Inflammatory Bowel Disease Treatment: Clinical and Natural Product Interventions Explored. Int J Mol Sci 2023; 24:11004. [PMID: 37446182 DOI: 10.3390/ijms241311004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex multifactorial chronic inflammatory disease, that includes Crohn's disease (CD) and ulcerative colitis (UC), having progressively increasing global incidence. Disturbed intestinal flora has been highlighted as an important feature of IBD and offers promising strategies for IBD remedies. A brief overview of the variations occurring in intestinal flora during IBD is presented, and the role of the gut microbiota in intestinal barrier maintenance, immune and metabolic regulation, and the absorption and supply of nutrients is reviewed. More importantly, we review drug research on gut microbiota in the past ten years, including research on clinical and natural drugs, as well as adjuvant therapies, such as Fecal Microbiota Transplantation and probiotic supplements. We also summarize the interventions and mechanisms of these drugs on gut microbiota.
Collapse
Affiliation(s)
- Mengjie Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yijie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
8
|
Yang Y, Li J, Zhou Z, Wu S, Zhao J, Jia W, Liu M, Shen X, He F, Cheng R. Gut Microbiota Perturbation in Early Life Could Influence Pediatric Blood Pressure Regulation in a Sex-Dependent Manner in Juvenile Rats. Nutrients 2023; 15:2661. [PMID: 37375565 DOI: 10.3390/nu15122661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The present study aimed to investigate whether gut dysbiosis induced by ceftriaxone in early life could influence pediatric blood pressure regulation in childhood with or without exposure to a high-fat diet (HFD). Sixty-three newborn pups of Sprague-Dawley rats were administered ceftriaxone sodium or saline solution until weaning at 3 weeks, and the rats were fed a HFD or regular diet from 3 to 6 weeks. Tail-cuff blood pressure, the expression levels of genes of the renin-angiotensin system (RAS), the concentrations of IL-1β, IL-6, and TNF-α in the colon and prefrontal cortex, and the composition of fecal microbiota were analyzed. Ceftriaxone treatment significantly increased the diastolic blood pressure of male rats at 3 weeks. At 6 weeks, systolic blood pressure (SBP) was significantly increased only in ceftriaxone treated male rats fed with HFD. The RAS showed increased activation in the kidney, heart, hypothalamus, and thoracic and abdominal aorta of male rats, but only in the kidney, heart, and hypothalamus of female rats. HFD-fed female rats showed a decreased level of IL-6 in the colon. α diversity of gut microbiota decreased and the Firmicutes to Bacteroidetes ratio increased in both male and female rats at 3 weeks; however, these parameters recovered to various degrees in female rats at 6 weeks. These results revealed that early-life gut dysbiosis induced by antibiotics combined with a HFD in childhood could be involved in pediatric blood pressure regulation and an increase in SBP in juvenile rats, and these effects occurred in a sex-dependent manner.
Collapse
Affiliation(s)
- Yang Yang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Jinxing Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhimo Zhou
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Simou Wu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Jincheng Zhao
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Jia
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Meixun Liu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xi Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Li W, Zhang S, Wang Y, Bian H, Yu S, Huang L, Ma W. Complex probiotics alleviate ampicillin-induced antibiotic-associated diarrhea in mice. Front Microbiol 2023; 14:1156058. [PMID: 37125182 PMCID: PMC10145528 DOI: 10.3389/fmicb.2023.1156058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Aim Antibiotic-associated diarrhea (AAD) is a common side effect during antibiotic treatment, which can cause dysbacteriosis of the gut microbiota. Previous studies have shown beneficial effects in AAD treatment with Bifidobacterium lactis XLTG11, Lactobacillus casei Zhang, Lactobacillus plantarum CCFM8661, and Lactobacillus rhamnosus Probio-M9. However, no studies have been conducted on the immunomodulatory effects and protective intestinal barrier function of four complex probiotics. The aim of our study is to investigate the alleviation effects of complex probiotics on ampicillin-induced AAD. Methods Thirty-six BALB/c mice were randomly divided into six groups: normal control group (NC), model control group (MC), low-, medium-, and high-dose probiotics groups (LD, MD, and HD), and positive drug (Bifico, 1 × 107 cfu) control group (PDC; Bifico, also known as Bifidobacterium Triple Live Capsule, is composed of Bifidobacterium longum, Lactobacillus acidophilus, and Enterococcus faecalis). An AAD model was established by intragastric administration of ampicillin, by gavage of different doses of complex probiotics and Bifico. The weight gain, fecal water content, loose stool grade, intestinal permeability, total protein and albumin levels, intestinal barrier, cytokine levels, and gut microbiota were determined. Results The results showed that complex probiotics significantly decreased the fecal water content, loose stool grade, intestinal permeability, and ileum tissue damage. Their application increased the weight gain, SIgA, TP, and ALB levels. Additionally, complex probiotics significantly decreased the levels of pro-inflammatory cytokines and increased those of anti-inflammatory cytokines. Meanwhile, the mRNA expression levels of ZO-1, occludin, claudin-1, and MUC2 were significantly upregulated in the probiotic-treated group. Furthermore, the complex probiotics increased the gut microbiota diversity and modulated the changes in the gut microbiota composition caused by ampicillin. At the phylum level, the abundance of Proteobacteria in the HD group was lower than that in the MC group, whereas that of Bacteroidetes was higher. At the genus level, the abundances of Klebsiella and Parabacteroides in the HD group were lower, whereas those of Bacteroides, Muribaculaceae, and Lactobacillus were higher than those in the MC group. Moreover, Spearman's correlation analysis also found that several specific gut microbiota were significantly correlated with AAD-related indicators. Conclusion We found that complex probiotics improved the diarrhea-related indexes, regulated gut microbiota composition and diversity, increased the expression levels of intestinal protective barrier-related genes, preserved the intestinal barrier function, and relieved inflammation and intestinal injury, thereby effectively improving AAD-associated symptoms. Graphical Abstract.
Collapse
|
10
|
Chen Z, Xu Q, Liu Y, Wei Y, He S, Lin W, Wang Y, Li L, Xu Y. Vancomycin-induced gut microbiota dysbiosis aggravates allergic rhinitis in mice by altered short-chain fatty acids. Front Microbiol 2022; 13:1002084. [PMID: 36439824 PMCID: PMC9687373 DOI: 10.3389/fmicb.2022.1002084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/06/2022] [Indexed: 06/11/2024] Open
Abstract
OBJECTIVE This study aims to explore how gut microbiota dysbiosis affects allergic rhinitis (AR) and whether short-chain fatty acids (SCFAs) play a role in this process. METHODS A mouse gut microbiota dysbiosis model was established by adding vancomycin to drinking water for 2 weeks before ovalbumin (OVA) sensitization. Then an OVA-alum AR mouse model was established by intraperitoneal OVA injection followed by nasal excitation. Hematoxylin and eosin (H&E) staining was performed to observe pathological changes in nasal and colon tissues of AR mice. Serum levels of total-IgE, OVA-sIgE, IL-4, IL-5, IL-10, and TGF-β1 were measured. The composition and diversity of the mouse gut microbiota were observed by 16S rDNA sequencing. Levels of SCFAs in feces were determined using SCFA-targeted metabolomics. Sodium butyrate (NaB) was added daily to mice on a low-fiber basal diet 2 weeks before the first sensitization, until the end of the study. RESULTS After gut microbiota dysbiosis, serum levels of the total IgE, OVA-sIgE, IL-4, and IL-5 in AR mice were significantly increased, compared with the control group. The composition and diversity of gut microbiota were significantly altered after gut microbiota dysbiosis, with the fecal SCFAs significantly reduced as well. The reduced bacterial genera after gut microbiota dysbiosis, such as Ruminococcus and Lactobacillus, were significantly and positively correlated with SCFAs. In contrast, the increased genera in the Van group, such as Escherichia-Shigella and Klebsiella, were significantly negatively correlated with SCFAs in feces. NaB treatment significantly reduced total-IgE, OVA-sIgE, IL-4, and IL-5 levels in serum, and inflammatory infiltration of the nasal and colon mucosa. In addition, serum levels of IL-10 and TGF-β1 increased significantly after NaB treatment. Foxp3 protein in the colon was upregulated considerably after NaB intervention. CONCLUSION Vancomycin-induced gut microbiota dysbiosis increased susceptibility and severity of AR, which is significantly related to reduced SCFA-producing bacteria, fecal SCFAs, and specific bacterial taxa. In addition, it was found that NaB alleviated low dietary fiber base-fed symptoms and immune status in AR mice.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qingqing Xu
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Liu
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yihan Wei
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shancai He
- Department of Otorhinolaryngology, Fuqing City Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yingge Wang
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Li Li
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yuanteng Xu
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|