1
|
Lv J, Liu S, Hu C, Ding L, Wang H, Li X, Yang F, Shen Q, Zhang H, Ma G, Zhang S, Bai Y. Saponin content in medicinal plants in response to application of organic and inorganic fertilizers: a meta-analysis. FRONTIERS IN PLANT SCIENCE 2025; 16:1535170. [PMID: 40007964 PMCID: PMC11851015 DOI: 10.3389/fpls.2025.1535170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/13/2025] [Indexed: 02/27/2025]
Abstract
The application of fertilizers is a key agronomic practice in the artificial cultivation of medicinal plants, aiming to boost yields and enhance the levels of their bioactive constituents. However, systematic investigations on the influence of various fertilizers on the concentration of active compounds in saponin-containing medicinal plants remain insufficient. In this study, 966 experimental outcomes from 29 papers were analyzed via meta-analysis to examine the effects of organic fertilizers, inorganic fertilizers, and their combined application on the levels of different saponin monomers in medicinal plants. The findings from the meta-analysis revealed that inorganic fertilizers contribute positively to the accumulation of saponins such as Rg1 in ginseng, Rb1, Rc, Rd, Re, and Rg1, in addition to the saponins from Paris polyphylla, Dioscorea, Panax quinquefolius, and Platycodon grandiflorus. Moreover, the application of organic fertilizers was found to markedly elevate the concentrations of Notoginsenoside R1, Ginsenoside Rb1, Ginsenoside Rb2, Re, and Rg1, along with Lancemasid saponins and Quinoa saponins. The combined use of both organic and inorganic fertilizers was shown to effectively increase the levels of Notoginsenoside R1 and Panax ginsenosides, encompassing Rb1, Rb2, Rc, Rd, Re, and Rg1. Overall, the results suggest that both individual and combined applications of organic and inorganic fertilizers have a positive impact on the enhancement of saponin monomers in medicinal plants. However, inorganic fertilizers promote the increase of saponin content, their prolonged use may lead to soil compaction and acidification, which could compromise the yield and quality of medicinal plants. On the other hand, organic fertilizers improve the soil environment and stimulate saponin accumulation, they do not supply all the nutrients required for the sustained growth of these plants. Therefore, a balanced fertilization strategy combining both organic and inorganic fertilizers is recommended as the optimal approach for cultivating saponin-rich medicinal plants.
Collapse
Affiliation(s)
- Junyan Lv
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Shouzan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Chunli Hu
- Food and Drug Inspection and Testing Center, Hangzhou, China
| | - Lan Ding
- Agriculture and Forestry Technology Extension Center, Hangzhou, China
| | - Hongzhen Wang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xin Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Feng Yang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Qiong Shen
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Hongbin Zhang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Guobiao Ma
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Shaobo Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yan Bai
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
2
|
Liu J, Yu Z, Gong Y, Chen J, Zhou L, Zhang W, Jia L. Fertilization Induced Soil Microbial Shifts Show Minor Effects on Sapindus mukorossi Yield. Microorganisms 2025; 13:173. [PMID: 39858941 PMCID: PMC11767780 DOI: 10.3390/microorganisms13010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Fertilization can improve soil nutrition and increase the yield of Sapindus mukorossi, but the response of soil microbial communities to fertilization treatments and their correlation with soil nutrition and Sapindus mukorossi yield are unclear. In order to investigate the characteristics of soil physicochemical qualities and the bacterial community, we carried out a field experiment comparing various quantities of nitrogen (N), phosphorus (P), and potassium (K) fertilizers to the unfertilized control treatments and the yield of Sapindus mukorossi in raw material forests in response to different applications of fertilizers and to try to clarify the interrelation among the three. Results showed that (1) there are significant differences in the effects of different fertilization treatments on the soil properties of Sapindus mukorossi raw material forests. The increase in the application rates of nitrogen or phosphorus fertilizers significantly reduced the soil pH value. (2) Compared with control, the α-diversity of bacterial communities was significantly lower in N3P2K2 and N1P1K2 treatments. Among the dominant groups of soil bacteria at the phylum level, the relative abundance of Chloroflexi showed an increase and then a decrease trend with the increase in N application. The relative abundance of Firmicutes, Bacteroidota, and Fusobacteriota was positively correlated with the application of P and K fertilizers, while the relative abundance of Acidobacteriota and Verrucomicrobiota decreased with the increase in P and K fertilizers. (3) The N2P2K2 treatment produced the highest sapindus yield (1464.58 kg/ha), which increased by 258.67% above the control. (4) Redundancy analysis (RDA) showed that the primary determinants of bacterial community structure were soil pH, total K, and effective P concentration. (5) Structural equation modeling (SEM) showed that soil nutrient content was the main direct factor driving the yield of Sapindus mukorossi, whereas the bacterial community attributes (e.g., diversity and structure) had minor effects on the yield. In summary, the rational use of formulated fertilization can change the bacterial community structure, improve the bacterial diversity, and increase the soil nutrient content, with the latter exerting a significant effect on the improvement of the yield of Sapindus mukorossi.
Collapse
Affiliation(s)
- Juntao Liu
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (J.L.); (Z.Y.); (Y.G.); (L.Z.)
- National Energy R&D Center for Non-Food Biomass, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing 100083, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Zhexiu Yu
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (J.L.); (Z.Y.); (Y.G.); (L.Z.)
| | - Yingyun Gong
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (J.L.); (Z.Y.); (Y.G.); (L.Z.)
| | - Jie Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China;
| | - Ling Zhou
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (J.L.); (Z.Y.); (Y.G.); (L.Z.)
| | - Weihua Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Liming Jia
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (J.L.); (Z.Y.); (Y.G.); (L.Z.)
- National Energy R&D Center for Non-Food Biomass, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Yang D, Liu X, Xu X, Niu T, Ma X, Fu G, Song C, Hou X. Effect of soil and community factors on the yield and medicinal quality of Artemisia argyi growth at different altitudes of the Funiu mountain. FRONTIERS IN PLANT SCIENCE 2024; 15:1430758. [PMID: 39534109 PMCID: PMC11554519 DOI: 10.3389/fpls.2024.1430758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Altitude and ecological factors significantly influence plant growth and the accumulation of secondary metabolites. However, current research on the impact of altitude and ecological factors on the yield and medicinal quality of Artemisia argyi (A. argyi) is limited. This study established sampling sites in wild populations of A. argyi across seven altitude ranges on Funiu Mountain. We quantified the yield, output rate of moxa, and key medicinal ingredients. Additionally, we analyzed the response of yield and medicinal quality of wild A. argyi populations to various ecological factors at different altitudes. The results showed that wild populations of A. argyi exhibited higher yields and medicinal quality at altitudes below 500 m. Yield was positively correlated with higher soil total nitrogen (TN) content and lower soil total phosphorus (TP) content, while the improvements in medicinal quality were positively associated with higher population density and lower contents of both soil TN and TP. The variation in soil C/N, C/P, and N/P ratios across different altitudes was substantial, affecting soil mineralization and subsequently influencing the absorption of mineral elements by A. argyi. Notably, the phosphorus content in leaves and stems was negatively correlated with yield and medicinal quality, respectively. In contrast, the accumulation of nitrogen, phosphorus, and potassium in leaves was positively correlated with yield. The differences in the primary medicinal ingredients between the leaves and stems of A. argyi were maximum at altitudes below 500 m. The contents of neochlorogenic acid and cryptochlorogenic acid in both leaves and stems showed a significant positive correlation. In the principal component analysis, the primary medicinal ingredients from the leaves contributed more significantly to the overall quality than those from stems. These results suggest that A. argyi is best suited for cultivation at altitudes below 500 m. Population density and the soil's TN and TP contents play a crucial role in determining the yield and medicinal quality of A. argyi. Futhermore, the medicinal quality of A. argyi is more indicative of the main medicinal ingredients found in the leaves, while the stems also serve as a key organ for accumulating flavonoids and phenolic acids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chengwei Song
- College of Agriculture/Tree Peony, Henan University of Science and
Technology, Luoyang, Henan, China
| | - Xiaogai Hou
- College of Agriculture/Tree Peony, Henan University of Science and
Technology, Luoyang, Henan, China
| |
Collapse
|
4
|
Wu D, Xiong F, Wang H, Liu S, Zhu J, Zhao D, Yang J, Ma W, Guo L, Kang C. Temperature seasonality and soil phosphorus availability shape ginseng quality via regulating ginsenoside contents. BMC PLANT BIOLOGY 2024; 24:824. [PMID: 39227804 PMCID: PMC11370115 DOI: 10.1186/s12870-024-05518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
The accumulation of secondary metabolites in Panax ginseng Meyer (P. ginseng) exhibits significant geographical variation, normally due to environmental factors. The current study aimed at elucidating the key environmental factors modulating the accumulation of secondary metabolites in P. ginseng. Plant and the associated soil samples were collected from ten geographical locations within the latitudinalrange of 27.09°N - 42.39°N and longitudinal range of 99.28°E - 128.19°E. 12 secondary metabolites in P. ginseng toots were measured. And the correlation between secondary metabolites with a series of soil properties and 7 climatic factors were investigated through Pearson's correlation, mantel test, random forest and pathway analysis. The results revealed that climatic factors were stronger drivers of ginseng secondary metabolite profile than soil nutrients. Specifically, temperature seasonality (TS) and soil available phosphorus (AP) were the most effective environments to have significantly and positively influence on the secondary metabolites of ginseng. This findings contribute to identifying optimal cultivation areas for P. ginseng, and hopefully establishing methods for interfering/shaping microclimate for cultivating high-quality P. ginseng.
Collapse
Affiliation(s)
- Dehua Wu
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Feng Xiong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Hongyang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Siqi Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Jitong Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Dan Zhao
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Wenqi Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Lanping Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| | - Chuanzhi Kang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| |
Collapse
|
5
|
Ito H, Ito M. Recent trends in ginseng research. J Nat Med 2024; 78:455-466. [PMID: 38512649 DOI: 10.1007/s11418-024-01792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Ginseng, the dried root of Panax ginseng, contains ginsenosides and has long been used in Korea, China, and Japan to treat various symptoms. Many studies on the utility of ginseng have been conducted and in this paper we investigate recent trends in ginseng research. P. ginseng studies were collected from scientific databases (PubMed, Web of Science, and SciFindern) using the keywords "Panax ginseng C.A. Meyer", "ginsenosides", "genetic diversity", "biosynthesis", "cultivation", and "pharmacology". We identified 1208 studies up to and including September 2023: 549 studies on pharmacology, 262 studies on chemical components, 131 studies on molecular biology, 58 studies on cultivation, 71 studies on tissue culture, 28 studies on clinical trials, 123 reviews, and 49 studies in other fields. Many researchers focused on the characteristic ginseng component ginsenoside to elucidate the mechanism of ginseng's pharmacological action, the relationship between component patterns and cultivation areas and conditions, and gene expression.
Collapse
Affiliation(s)
- Honoka Ito
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Michiho Ito
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki City, Kanagawa, 210-9501, Japan.
| |
Collapse
|
6
|
Mavroeidis A, Stavropoulos P, Papadopoulos G, Tsela A, Roussis I, Kakabouki I. Alternative Crops for the European Tobacco Industry: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:236. [PMID: 38256796 PMCID: PMC10818552 DOI: 10.3390/plants13020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Tobacco (Nicotiana tabacum L.) is a major industrial crop that has being cultivated for centuries for the manufacturing of cigarettes, cigars, and other smoking products. Due to its negative effects on both human health and the environment, the European Union has adopted strict policies that aspire to reduce the consumption of tobacco. Herbal cigarettes are alternative smoking products that are often advertised as healthier than conventional tobacco cigarettes and are especially popular in Asian markets. Even though the available literature suggests that they are equally detrimental to human health, the introduction of tobacco-alternative crops (TACs) to the European tobacco industry could smoothen the abandonment of tobacco, and eventually smoking products altogether, in the EU. The aim of the present systematic review was to compile a list of possible TACs that could be incorporated in the European smoking industry, and highlight their strengths and weaknesses. The most dominant crops in the literature (and in the existing market products) were calendula (Calendula officinalis L.), mullein (Verbascum thapsus L.), ginseng (Panax ginseng C.A.Mey.), tea (Camellia sinensis (L.) Kuntze), chamomile (Matricaria chamomilla L.), and mentha (Mentha spp.). Even though these crops are promising, further research is required for their incorporation in the European tobacco industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Ioanna Kakabouki
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 118 55 Athens, Greece; (A.M.); (P.S.); (G.P.); (A.T.); (I.R.)
| |
Collapse
|
7
|
Sun J, Yang J, Zhao S, Yu Q, Weng L, Xiao C. Root exudates influence rhizosphere fungi and thereby synergistically regulate Panax ginseng yield and quality. Front Microbiol 2023; 14:1194224. [PMID: 37547697 PMCID: PMC10397396 DOI: 10.3389/fmicb.2023.1194224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Root exudates contain a complex array of primary and specialized metabolites that play important roles in plant growth due to their stimulatory and inhibitory activities that can select for specific microbes. In this study, we investigated the effects of different root exudate concentrations on the growth of ginseng (Panax ginseng C. A. Mey), ginsenoside levels, and soil fungal community composition and diversity. The results showed that low root exudate concentrations in the soil promoted ginseng rhizome biomass and ginsenoside levels (Rg1, Re, Rf, Rg2, Rb1, Ro, Rc, Rb2, Rb3, and Rd) in rhizomes. However, the rhizome biomass and ginsenoside levels gradually decreased with further increases in the root exudate concentration. ITS sequencing showed that low root exudate concentrations in the soil hardly altered the rhizosphere fungal community structure. High root exudate concentrations altered the structure, involving microecological imbalance, with reduced abundances of potentially beneficial fungi (such as Mortierella) and increased abundances of potentially pathogenic fungi (such as Fusarium). Correlation analysis showed that rhizome biomass and ginsenoside levels were significantly positively correlated with the abundances of potentially beneficial fungi, while the opposite was true for potentially pathogenic fungi. Overall, low root exudate concentrations promote the growth and development of ginseng; high root exudate concentrations lead to an imbalance in the rhizosphere fungal community of ginseng and reduce the plant's adaptability. This may be an important factor in the reduced ginseng yield and quality and soil sickness when ginseng is grown continuously.
Collapse
|