1
|
Girimpuhwe D, Wu QX. Plant Pathogenic Fungi: A Treasure Trove of Bioactive γ-Pyrones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40415273 DOI: 10.1021/acs.jafc.5c04333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Plant pathogenic fungi are among the primary causes of plant diseases, which reduce worldwide crop yield. Regardless of their pathogenicity, they substantially contribute to medicine, agriculture, and other fields through their ability to generate bioactive natural substances. Particularly, they can produce γ-pyrones, the main scaffold in various biologically active metabolites. Numerous pharmacologists and natural product chemists are intrigued by natural compounds with γ-pyrone scaffolds due to their potential use as antibacterial, antifungal, anticancer, antiinflammatory, antidiabetes, antioxidant, and antiviral agents. Despite the extensive applications and increasing reports of γ-pyrones, their systematic chemistry, manufacturing, and therapeutic significance, especially in plant pathogenic fungi, remain inadequately understood. This review, covering up to December 2024, addresses this gap by compiling 316 γ-pyrones from plant-pathogenic fungi. The γ-pyrones are categorized into chromones (35%), xanthones (28%), naphtho-γ-pyrones (25%), hybrid pyrones (6%), monocyclic pyrones (4%), flavonoids/isoflavonoids (1%), and others (1%). This review elucidates the natural origins of γ-pyrones, their biosynthesis, pharmacological properties, activity mechanisms, structure-activity relationships, and biological activity. It also discusses the present evolutionary status, problems, future directions, and potential of γ-pyrones to assist scientists in their discovery. Furthermore, it seeks to underscore the significance of γ-pyrones as promising natural products for agriculture and pharmaceutical development.
Collapse
Affiliation(s)
- Desire Girimpuhwe
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Quan-Xiang Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
- Shenzhen Research Institute, Lanzhou University, Shenzhen 518107, People's Republic of China
- College of Pharmacy, Qinghai Minzu University, Xining 810007, People's Republic of China
| |
Collapse
|
2
|
Fan Y, Shi B. Endophytic Fungi from the Four Staple Crops and Their Secondary Metabolites. Int J Mol Sci 2024; 25:6057. [PMID: 38892244 PMCID: PMC11173346 DOI: 10.3390/ijms25116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Endophytic fungi are present in every plant, and crops are no exception. There are more than 50,000 edible plant species on the planet, but only 15 crops provide 90 percent of the global energy intake, and "the big four"-wheat, rice, maize and potato-are staples for about 5 billion people. Not only do the four staple crops contribute to global food security, but the endophytic fungi within their plant tissues are complex ecosystems that have been under scrutiny. This review presents an outline of the endophytic fungi and their secondary metabolites in four staple crops: wheat, rice, maize and potato. A total of 292 endophytic fungi were identified from the four major crops, with wheat having the highest number of 157 endophytic fungi. Potato endophytic fungi had the highest number of secondary metabolites, totaling 204 compounds, compared with only 23 secondary metabolites from the other three crops containing endophytic fungi. Some of the compounds are those with specific structural and pharmacological activities, which may be beneficial to agrochemistry and medicinal chemistry.
Collapse
Affiliation(s)
| | - Baobao Shi
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China;
| |
Collapse
|
3
|
Moussa AY. The limitless endophytes: their role as antifungal agents against top priority pathogens. Microb Cell Fact 2024; 23:161. [PMID: 38822407 PMCID: PMC11140875 DOI: 10.1186/s12934-024-02411-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024] Open
Abstract
Multi resistant fungi are on the rise, and our arsenal compounds are limited to few choices in the market such as polyenes, pyrimidine analogs, azoles, allylamines, and echinocandins. Although each of these drugs featured a unique mechanism, antifungal resistant strains did emerge and continued to arise against them worldwide. Moreover, the genetic variation between fungi and their host humans is small, which leads to significant challenges in new antifungal drug discovery. Endophytes are still an underexplored source of bioactive secondary metabolites. Many studies were conducted to isolate and screen endophytic pure compounds with efficacy against resistant yeasts and fungi; especially, Candida albicans, C. auris, Cryptococcus neoformans and Aspergillus fumigatus, which encouraged writing this review to critically analyze the chemical nature, potency, and fungal source of the isolated endophytic compounds as well as their novelty features and SAR when possible. Herein, we report a comprehensive list of around 320 assayed antifungal compounds against Candida albicans, C. auris, Cryptococcus neoformans and Aspergillus fumigatus in the period 1980-2024, the majority of which were isolated from fungi of orders Eurotiales and Hypocreales associated with terrestrial plants, probably due to the ease of laboratory cultivation of these strains. 46% of the reviewed compounds were active against C. albicans, 23% against C. neoformans, 29% against A. fumigatus and only 2% against C. auris. Coculturing was proved to be an effective technique to induce cryptic metabolites absent in other axenic cultures or host extract cultures, with Irperide as the most promising compounds MIC value 1 μg/mL. C. auris was susceptible to only persephacin and rubiginosin C. The latter showed potent inhibition against this recalcitrant strain in a non-fungicide way, which unveils the potential of fungal biofilm inhibition. Further development of culturing techniques and activation of silent metabolic pathways would be favorable to inspire the search for novel bioactive antifungals.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, African Union Organization Street, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
4
|
Wei SS, Lai JY, Chen C, Zhang YJ, Nong XM, Qiu KD, Duan FF, Zou ZX, Tan HB. Sesquiterpenes and α-pyrones from an endophytic fungus Xylaria curta YSJ-5. PHYTOCHEMISTRY 2024; 220:114011. [PMID: 38367793 DOI: 10.1016/j.phytochem.2024.114011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Chemical investigation of the culture extract of an endophyte Xylaria curta YSJ-5 from Alpinia zerumbet (Pers.) Burtt. et Smith resulted in the isolation of eight previously undescribed compounds including five eremophilane sesquiterpenes xylarcurenes A-E, one norsesquiterpene xylarcurene F, and two α-pyrone derivatives xylarpyrones A-B together with eight known related derivatives. Their chemical structures were extensively established based on the 1D- and 2D-NMR spectroscopic analysis, modified Mosher's method, electronic circular dichroism calculations, single-crystal X-ray diffraction experiments, and the comparison with previous literature data. All these compounds were tested for in vitro cytotoxic, anti-inflammatory, α-glucosidase inhibitory, and antibacterial activities. As a result, 6-pentyl-4-methoxy-pyran-2-one was disclosed to display significant antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus with minimal inhibitory concentration value of 6.3 μg/mL.
Collapse
Affiliation(s)
- Shan-Shan Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Ying Lai
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha Hunan 410013, China
| | - Yan-Jiang Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Miao Nong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Kai-Di Qiu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang-Fang Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhen-Xing Zou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha Hunan 410013, China.
| | - Hai-Bo Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha Hunan 410013, China.
| |
Collapse
|
5
|
Guan J, Zhang PP, Wang XH, Guo YT, Zhang ZJ, Li P, Lin LP. Structure-Guided Discovery of Diverse Cytotoxic Dimeric Xanthones/Chromanones from Penicillium chrysogenum C-7-2-1 and Their Interconversion Properties. JOURNAL OF NATURAL PRODUCTS 2024; 87:238-251. [PMID: 38354306 DOI: 10.1021/acs.jnatprod.3c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Xanthone-chromanone homo- or heterodimers are regarded as a novel class of topoisomerase (Topo) inhibitors; however, limited information about these compounds is currently available. Here, 14 new (1-14) and 6 known tetrahydroxanthone chromanone homo- and heterodimers (15-20) are reported as isolated from Penicillium chrysogenum C-7-2-1. Their structures and absolute configurations were unambiguously demonstrated by a combination of spectroscopic data, single-crystal X-ray diffraction, modified Mosher's method, and electronic circular dichroism analyses. Plausible biosynthetic pathways are proposed. For the first time, it was discovered that tetrahydroxanthones can convert to chromanones in water, whereas chromone dimerization does not show this property. Among them, compounds 5, 7, 8, and 16 exhibited significant cytotoxicity against H23 cell line with IC50 values of 6.9, 6.4, 3.9, and 2.6 μM, respectively.
Collapse
Affiliation(s)
- Jing Guan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| | - Pan-Pan Zhang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| | - Xin-Hui Wang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| | - Yu-Tong Guo
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| | - Zi-Jin Zhang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| | - Peng Li
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| | - Li-Ping Lin
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Iantas J, Savi DC, Ponomareva LV, Thorson JS, Rohr J, Glienke C, Shaaban KA. Paecilins Q and R: Antifungal Chromanones Produced by the Endophytic Fungus Pseudofusicoccum stromaticum CMRP4328. PLANTA MEDICA 2023; 89:1178-1189. [PMID: 36977488 PMCID: PMC10698238 DOI: 10.1055/a-2063-5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chemical investigation of the endophyte Pseudofusicoccum stromaticum CMRP4328 isolated from the medicinal plant Stryphnodendron adstringens yielded ten compounds, including two new dihydrochromones, paecilins Q (1: ) and R (2: ). The antifungal activity of the isolated metabolites was assessed against an important citrus pathogen, Phyllosticta citricarpa. Cytochalasin H (6: ) (78.3%), phomoxanthone A (3: ) (70.2%), phomoxanthone B (4: ) (63.1%), and paecilin Q (1: ) (50.5%) decreased in vitro the number of pycnidia produced by P. citricarpa, which are responsible for the disease dissemination in orchards. In addition, compounds 3: and 6: inhibited the development of citrus black spot symptoms in citrus fruits. Cytochalasin H (6: ) and one of the new compounds, paecilin Q (1: ), appear particularly promising, as they showed strong activity against this citrus pathogen, and low or no cytotoxic activity. The strain CMRP4328 of P. stromaticum and its metabolites deserve further investigation for the control of citrus black spot disease.
Collapse
Affiliation(s)
- Jucélia Iantas
- Postgraduate Program in Microbiology, Department of Pathology, Federal University of Paraná (UFPR), Curitiba, Brazil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Kentucky, United States
| | - Daiani Cristina Savi
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
- Department of Biomedicine, Centro Universitário Católica de Santa Catarina, Joinville, Brazil
| | - Larissa V. Ponomareva
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Kentucky, United States
| | - Jon S. Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Kentucky, United States
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States
| | - Chirlei Glienke
- Postgraduate Program in Microbiology, Department of Pathology, Federal University of Paraná (UFPR), Curitiba, Brazil
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Khaled A. Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Kentucky, United States
| |
Collapse
|