1
|
Liu R, Wei Y, Lu J, Yin D, Liang Y, Li J, Xiao J, Mo Z, Yi H, Zhang H, Shen N, Zhang B. Heterologous expression, enzymatic properties, product analysis and molecular docking of assimilative nitrite reductase (NiR) in Bacillus velezensis GXMZU-B1 derived from mariculture. Int J Biol Macromol 2025; 291:139047. [PMID: 39708852 DOI: 10.1016/j.ijbiomac.2024.139047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
High concentrations of nitrite stress aquatic animals, leading to significant fish and shrimp deaths as well as environmental pollution. Reducing nitrite levels in high-density aquaculture is crucial for both aquaculture safety and environmental protection. Nitrite reductase (NiR) can rapidly reduce nitrite in water, offering potential applications in aquaculture and water treatment. In this study, a novel NiR gene (nasD) was isolated from Bacillus velezensis GXMZU-B1, a highly effective nitrite-degrading bacterium, and expressed heterologously in Escherichia coli. The recombinant NASD was purified using Ni-NTA affinity chromatography, and its physicochemical properties and reaction products were analyzed. The enzyme showed optimal activity at 30°C and pH 6.5. Metal ions such as Fe3+, Zn2+, and Ba2+ enhanced enzyme activity, whereas Cu2+, K+, Mg2+, and Mn2+ reduced it. The best electron donors was NADPH. NASD converts nitrite (NO2-) into ammonium (NH4+), making it environmentally friendly and potentially valuable for aquaculture and water pollution control. Bioinformatics analysis indicated that the enzyme is stable, with a conserved sequence and a Pyr_redox_2 domain. Using NADPH as a coenzyme, AlphaFold3 modeling and molecular docking with nitrite identified 14 potential catalytic sites. These findings highlight the potential of recombinant NASD as a promising candidate for nitrite degradation in aquaculture.
Collapse
Affiliation(s)
- Rui Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Yuling Wei
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Junming Lu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Doudou Yin
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Ying Liang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Jiling Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Junfeng Xiao
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Zuqin Mo
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Han Yi
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China.
| | - Bin Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China.
| |
Collapse
|
2
|
Wang Q, Zhao Y, Liu Y, Zhang C, Bamanu B, Wu Y, Chao C, Liu Y, Tong Y, Nuramkhaan M. Recovery mechanism of bio-promoters on Cr(VI) suppressed denitrification: Toxicity remediation and enhanced electron transmission. WATER RESEARCH 2024; 252:121230. [PMID: 38330714 DOI: 10.1016/j.watres.2024.121230] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/31/2023] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Although the biotoxicity of heavy metals has been widely studied, there are few reports on the recovery strategy of the inhibited bio-system. This study proposed a combined promoter-I (Primary promoter: l-cysteine, biotin, and cytokinin + Electron-shuttle: PMo12) to recover the denitrification suppressed by Cr(VI). Compared with self-recovery, combined promoter-I shortened the recovery time of 28 cycles, and the recovered reactor possessed more stable long-term operation performance with >95 % nitrogen removal. The biomass increased by 7.07 mg VSS/(cm3 carrier) than self-recovery due to the promoted bacterial reproduction, thereby reducing the toxicity load of chromium per unit biomass. The combined promoter-I strengthened the toxicity remediation by promoting 92.84 % of the intracellular chromium release and rapidly activating anti-oxidative stress response. During toxicity remediation, ROS content quickly decreased, and the PN/PS value was 2.27 times that of self-recovery. PMo12 relieved Cr(VI) inhibition on NO3--N reduction by increasing NAR activity. The enhanced intracellular and intercellular electron transmission benefited from the stimulated NADH, FMN, and Cyt.c secretion by the primary promoter and the improved transmembrane electron transmission by Mo. PMo12 and the primary promoter synergized in regulating community structure and improving microbial richness. This study provided practical approaches for microbial toxicity remediation and maintaining high-efficiency denitrification.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bibek Bamanu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Chunfang Chao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Marjangul Nuramkhaan
- Laboratory of Microbiology, Institute of Biology, Mongolian Academy of Sciences, Peace avenue-54b, Ulaanbaatar, Mongolia
| |
Collapse
|
3
|
Wang Y, Zhou Z, Zhang W, Guo J, Li N, Zhang Y, Gong D, Lyu Y. Metabolic mechanism of Cr(VI) pollution remediation by Alicycliphilus denitrificans Ylb10. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169135. [PMID: 38070572 DOI: 10.1016/j.scitotenv.2023.169135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Cr(VI) is a well-known toxic pollutant and its remediation has attracted great attention. It is important to continuously discover and explore new high-efficiency Cr(VI) reducing bacteria to further improve the efficiency of Cr(VI) pollution remediation. In this paper, metabolic mechanism of Cr(VI) reduction in a new highly efficient Cr(VI) reducing bacterium, Alicycliphilus denitrificans Ylb10, was investigated. The results showed that Ylb10 could tolerate and completely reduce 450 mg/L Cr(VI). Cr(VI) can be reduced in the intracellular compartment, membrane and the extracellular compartment, with the plasma membrane being the main active site for Cr(VI) reduction. With the addition of NADH, the reduction efficiency of cell membrane components for Cr(VI) increased 2.3-fold. The omics data analysis showed that sulfite reductase CysJ, thiosulfate dehydrogenase TsdA, nitrite reductase NrfA, nitric oxide reductase NorB, and quinone oxidoreductase ChrR play important roles in the reduction of Cr(VI), in the intracellular, and the extracellular compartment, and the membrane of Ylb10, and therefore Cr(VI) was reduced by the combined action of several reductases at these three locations.
Collapse
Affiliation(s)
- Yue Wang
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Zhiyi Zhou
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Wen Zhang
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang 443002, China; Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang 443002, China
| | - Jinling Guo
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang 443002, China; Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang 443002, China
| | - Ning Li
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China
| | - Yaoping Zhang
- DOE-Great Lakes Bioenergy Research Center (GLBRC), University of Wisconsin-Madison, Madison, WI, USA
| | - Dachun Gong
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang 443002, China; Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang 443002, China
| | - Yucai Lyu
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang 443002, China; Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
4
|
Yu NN, Park G. Nitric Oxide in Fungi: Production and Function. J Fungi (Basel) 2024; 10:155. [PMID: 38392826 PMCID: PMC10889981 DOI: 10.3390/jof10020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Nitric oxide (NO) is synthesized in all kingdoms of life, where it plays a role in the regulation of various physiological and developmental processes. In terms of endogenous NO biology, fungi have been less well researched than mammals, plants, and bacteria. In this review, we summarize and discuss the studies to date on intracellular NO biosynthesis and function in fungi. Two mechanisms for NO biosynthesis, NO synthase (NOS)-mediated arginine oxidation and nitrate- and nitrite-reductase-mediated nitrite reduction, are the most frequently reported. Furthermore, we summarize the multifaceted functions of NO in fungi as well as its role as a signaling molecule in fungal growth regulation, development, abiotic stress, virulence regulation, and metabolism. Finally, we present potential directions for future research on fungal NO biology.
Collapse
Affiliation(s)
- Nan-Nan Yu
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|