1
|
Luo D, Zhou J, Ruan S, Zhang B, Zhu H, Que Y, Ying S, Li X, Hu Y, Song Z. Overcoming immunotherapy resistance in gastric cancer: insights into mechanisms and emerging strategies. Cell Death Dis 2025; 16:75. [PMID: 39915459 PMCID: PMC11803115 DOI: 10.1038/s41419-025-07385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
Gastric cancer (GC) remains a leading cause of cancer-related mortality worldwide, with limited treatment options in advanced stages. Immunotherapy, particularly immune checkpoint inhibitors (ICIs) targeting PD1/PD-L1, has emerged as a promising therapeutic approach. However, a significant proportion of patients exhibit primary or acquired resistance, limiting the overall efficacy of immunotherapy. This review provides a comprehensive analysis of the mechanisms underlying immunotherapy resistance in GC, including the role of the tumor immune microenvironment, dynamic PD-L1 expression, compensatory activation of other immune checkpoints, and tumor genomic instability. Furthermore, the review explores GC-specific factors such as molecular subtypes, unique immune evasion mechanisms, and the impact of Helicobacter pylori infection. We also discuss emerging strategies to overcome resistance, including combination therapies, novel immunotherapeutic approaches, and personalized treatment strategies based on tumor genomics and the immune microenvironment. By highlighting these key areas, this review aims to inform future research directions and clinical practice, ultimately improving outcomes for GC patients undergoing immunotherapy.
Collapse
Affiliation(s)
- Dingtian Luo
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jing Zhou
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shuiliang Ruan
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Binzhong Zhang
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Huali Zhu
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yangming Que
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shijie Ying
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaowen Li
- Pathology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yuanmin Hu
- Intensive Care Unit, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
2
|
Chowdhury D, Das A, Mishra M, Khutere T, Bodakhe SH. Physiological markers for immunotherapeutics: a review. J Chemother 2024:1-24. [PMID: 39711144 DOI: 10.1080/1120009x.2024.2443701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Immunotherapy has been advanced through multiple approaches, including immunogenic cytokines, monoclonal antibodies, therapeutic vaccinations, adoptive cell transfer, stem cell transplantation, and oncolytic viruses. This review analyses various strategies in genomics, transcriptomics, single-cell techniques, computational analysis, big data, and imaging technologies for the identification of tumour microbiota and microenvironments. Immunotherapy is becoming acknowledged as a feasible cancer treatment method, facilitating innovative cancer medicines and personalized medicine techniques.
Collapse
Affiliation(s)
- Durlav Chowdhury
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Ashmita Das
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Mrityunjay Mishra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Trinkal Khutere
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| |
Collapse
|
3
|
Zhang M, Wang Y, Gan Y. The potential role of Akkermansia muciniphila in liver health. Future Microbiol 2024; 19:1081-1096. [PMID: 39109507 PMCID: PMC11323942 DOI: 10.2217/fmb-2023-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Akkermansia muciniphila (A. muciniphila) is a 'star strain' that has attracted much attention in recent years. A. muciniphila can effectively regulate host metabolism, significantly affect host immune function, and play an important role in balancing host health and disease. As one of the organs most closely related to the gut (the two can communicate through the hepatic portal vein and bile duct system), liver is widely affected by intestinal microorganisms. A growing body of evidence suggests that A. muciniphila may alleviate liver-related diseases by improving the intestinal barrier, energy metabolism and regulating inflammation through its protein components and metabolites. This paper systematically reviews the key roles of A. muciniphila and its derivatives in maintaining liver health and improving liver disease.
Collapse
Affiliation(s)
- Min Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501 Haike Road, Shanghai, 201203, China
| | - Yang Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501 Haike Road, Shanghai, 201203, China
| | - Yong Gan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501 Haike Road, Shanghai, 201203, China
| |
Collapse
|
4
|
David A, Lev-Ari S. Targeting the Gut Microbiome to Improve Immunotherapy Outcomes: A Review. Integr Cancer Ther 2024; 23:15347354241269870. [PMID: 39223798 PMCID: PMC11369881 DOI: 10.1177/15347354241269870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/18/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
The following narrative review embarks on a comprehensive exploration of the role played by the gut microbiome within the Diet-Microbiota-Immunity (DMI) tripartite, aiming to enhance anti-cancer immunotherapy efficacy. While revolutionizing cancer treatment, resistance to immunotherapy and immune-related adverse events (irAEs) remain challenges. The tumor microenvironment (TME), shaped by cancer cells, influences immunotherapy resistance. The gut microbiome, influenced by genetics, environment, diet, and interventions, emerges as a critical player in TME reshaping, thereby modulating immune responses and treatment outcomes. Dietary patterns like the Mediterranean diet, caloric restriction modifications, and specific nutritional components show promise in influencing the tumor microenvironment and gut microbiome for better treatment outcomes. Antibiotics, disrupting gut microbiota diversity, may compromise immunotherapy efficacy. This review emphasizes the need for tailored nutritional strategies to manipulate microbial communities, enhance immune regulation, and improve immunotherapy accessibility while minimizing side effects. Ongoing studies investigate the impact of dietary interventions on cancer immunotherapy, pointing toward promising developments in personalized cancer care. This narrative review synthesizes existing knowledge and charts a course for future investigations, presenting a holistic perspective on the dynamic interplay between dietary interventions, the gut microbiome, and cancer immunotherapy within the DMI tripartite.
Collapse
Affiliation(s)
- Adi David
- Tal Center for Integrative Medicine, Institute of Oncology, Sheba Medical Center, Ramat-Gan, Israel
| | - Shaked Lev-Ari
- Ella Lemelbaum Institute For Immuno-Oncology, Sheba Medical Center, Ramat-Gan, Israel
- Education Authority, Sheba Medical Center, Ramat-Gan, Israel
| |
Collapse
|
5
|
Wang Y, Han W, Wang N, Han M, Ban M, Dai J, Dong Y, Sun T, Xu J. The role of microbiota in the development and treatment of gastric cancer. Front Oncol 2023; 13:1224669. [PMID: 37841431 PMCID: PMC10572359 DOI: 10.3389/fonc.2023.1224669] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023] Open
Abstract
The stomach was once considered a sterile organ until the discovery of Helicobacter pylori (HP). With the application of high-throughput sequencing technology and macrogenomics, researchers have identified fungi and fivemajor bacterial phyla within the stomachs of healthy individuals. These microbial communities exert regulatory influence over various physiological functions, including energy metabolism and immune responses. HP is a well-recognized risk factor for gastric cancer, significantly altering the stomach's native microecology. Currently, numerous studies are centered on the mechanisms by which HP contributes to gastric cancer development, primarily involving the CagA oncoprotein. However, aside from exogenous infections such as HP and EBV, certain endogenous dysbiosis can also lead to gastric cancer through multiple mechanisms. Additionally, gut microbiota and its metabolites significantly impact the development of gastric cancer. The role of microbial therapies, including diet, phages, probiotics and fecal microbiota transplantation, in treating gastric cancer should not be underestimated. This review aims to study the mechanisms involved in the roles of exogenous pathogen infection and endogenous microbiota dysbiosis in the development of gastric cancer. Also, we describe the application of microbiota therapy in the treatment and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Yiwen Wang
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Wenjie Han
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Na Wang
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Mengzhen Han
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Meng Ban
- Department of Bioinformatics, Kanghui Biotechnology Co., Ltd., Shenyang, China
| | - Jianying Dai
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yuesheng Dong
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Tao Sun
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Oncology Medicine, Key Laboratory of Liaoning Breast Cancer Research, Shenyang, Liaoning, China
| | - Junnan Xu
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Oncology Medicine, Key Laboratory of Liaoning Breast Cancer Research, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Wang M, Yang G, Tian Y, Zhang Q, Liu Z, Xin Y. The role of the gut microbiota in gastric cancer: the immunoregulation and immunotherapy. Front Immunol 2023; 14:1183331. [PMID: 37457738 PMCID: PMC10348752 DOI: 10.3389/fimmu.2023.1183331] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/11/2023] [Indexed: 07/18/2023] Open
Abstract
Gastric cancer (GC) is one of the most common cancers, leading to the deaths of millions of people worldwide. Therefore, early detection and effective therapeutic strategies are of great value for decreasing the occurrence of advanced GC. The human microbiota is involved not only in the maintenance of physiological conditions, but also in human diseases such as obesity, diabetes, allergic and atopic diseases, and cancer. Currently, the composition of the bacteria in the host, their functions, and their influence on disease progression and treatment are being discussed. Previous studies on the gut microbiome have mostly focused on Helicobacter pylori (Hp) owing to its significant role in the development of GC. Nevertheless, the enrichment and diversity of other bacteria that can modulate the tumor microenvironment are involved in the progression of GC and the efficacy of immunotherapy. This review provides systematic insight into the components of the gut microbiota and their application in GC, including the specific bacteria of GC, their immunoregulatory effect, and their diagnostic value. Furthermore, we discuss the relationship between the metabolism of microbes and their potential applications, which may serve as a new approach for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Meiqi Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ge Yang
- College of Basic Medical Sciences and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yuan Tian
- College of Basic Medical Sciences and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Qihe Zhang
- College of Basic Medical Sciences and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Xin
- College of Basic Medical Sciences and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
7
|
Girardi DM, Sousa LP, Miranda TA, Haum FNC, Pereira GCB, Pereira AAL. Systemic Therapy for Advanced Hepatocellular Carcinoma: Current Stand and Perspectives. Cancers (Basel) 2023; 15:1680. [PMID: 36980566 PMCID: PMC10046570 DOI: 10.3390/cancers15061680] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Hepatocellular carcinoma often develops in the context of chronic liver disease. It is the sixth most frequently diagnosed cancer and the third most common cause of cancer-related mortality worldwide. Although the mainstay of therapy is surgical resection, most patients are not eligible because of liver dysfunction or tumor extent. Sorafenib was the first tyrosine kinase inhibitor that improved the overall survival of patients who failed to respond to local therapies or had advanced disease, and for many years, it was the only treatment approved for the first-line setting. However, in recent years, trials have demonstrated an improvement in survival with treatments based on immunotherapy and new targeting agents, thereby extending the treatment options. A phase III trial showed that a combination of immunotherapy and targeted therapy, including atezolizumab plus bevacizumab, improved survival in the first-line setting, and is now considered the new standard of care. Other agents and combinations are being tested, including the combination of nivolumab plus ipilimumab and tremelimumab plus durvalumab, and they reportedly have clinical benefits. The aim of this manuscript is to review the latest approved therapeutic options in first- and second-line settings for advanced HCC and discuss future perspectives.
Collapse
Affiliation(s)
- Daniel M. Girardi
- Hospital Sírio-Libanes, SGAS 613/614 Conjunto E Lote 95-Asa Sul, Brasília 70200-730, Brazil
- Hospital de Base do Distrito Federal, SMHS-Área Especial, Q. 101-Asa Sul, Brasília 70330-150, Brazil
| | - Lara P. Sousa
- Escola Superior de Ciências em Saúde, SMHN Conjunto A Bloco 01 Edifício Fepecs-Asa Norte, Brasília 70710-907, Brazil
| | - Thiago A. Miranda
- Escola Superior de Ciências em Saúde, SMHN Conjunto A Bloco 01 Edifício Fepecs-Asa Norte, Brasília 70710-907, Brazil
| | - Fernanda N. C. Haum
- Escola Superior de Ciências em Saúde, SMHN Conjunto A Bloco 01 Edifício Fepecs-Asa Norte, Brasília 70710-907, Brazil
| | - Gabriel C. B. Pereira
- Hospital Sírio-Libanes, SGAS 613/614 Conjunto E Lote 95-Asa Sul, Brasília 70200-730, Brazil
- Hospital de Base do Distrito Federal, SMHS-Área Especial, Q. 101-Asa Sul, Brasília 70330-150, Brazil
| | - Allan A. L. Pereira
- Hospital Sírio-Libanes, SGAS 613/614 Conjunto E Lote 95-Asa Sul, Brasília 70200-730, Brazil
- Hospital de Base do Distrito Federal, SMHS-Área Especial, Q. 101-Asa Sul, Brasília 70330-150, Brazil
| |
Collapse
|
8
|
Sánchez-de-la-Torre M, Cubillos C, Veatch OJ, Garcia-Rio F, Gozal D, Martinez-Garcia MA. Potential Pathophysiological Pathways in the Complex Relationships between OSA and Cancer. Cancers (Basel) 2023; 15:1061. [PMID: 36831404 PMCID: PMC9953831 DOI: 10.3390/cancers15041061] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Several epidemiological and clinical studies have suggested a relationship between obstructive sleep apnea (OSA) and a higher incidence or severity of cancer. This relationship appears to be dependent on a myriad of factors. These include non-modifiable factors, such as age and gender; and modifiable or preventable factors, such as specific comorbidities (especially obesity), the use of particular treatments, and, above all, the histological type or location of the cancer. Heterogeneity in the relationship between OSA and cancer is also related to the influences of intermittent hypoxemia (a hallmark feature of OSA), among others, on metabolism and the microenvironment of different types of tumoral cells. The hypoxia inducible transcription factor (HIF-1α), a molecule activated and expressed in situations of hypoxemia, seems to be key to enabling a variety of pathophysiological mechanisms that are becoming increasingly better recognized. These mechanisms appear to be operationally involved via alterations in different cellular functions (mainly involving the immune system) and molecular functions, and by inducing modifications in the microbiome. This, in turn, may individually or collectively increase the risk of cancer, which is then, further modulated by the genetic susceptibility of the individual. Here, we provide an updated and brief review of the different pathophysiological pathways that have been identified and could explain the relationship between OSA and cancer. We also identify future challenges that need to be overcome in this intriguing field of research.
Collapse
Affiliation(s)
- Manuel Sánchez-de-la-Torre
- Group of Precision Medicine in Chronic Diseases, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, IRBLleida, University of Lleida, 25003 Lleida, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Carolina Cubillos
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Group of Respiratory Diseases, Respiratory Department, Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
| | - Olivia J. Veatch
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Francisco Garcia-Rio
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Group of Respiratory Diseases, Respiratory Department, Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
| | - David Gozal
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Miguel Angel Martinez-Garcia
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Respiratory Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Pneumology Department, University and Polytechnic La Fe Hospital, 46012 Valencia, Spain
| |
Collapse
|
9
|
Mi Y, Iqbal F, Mahmood N, Bukhari I, Zheng P. Editorial: Chronology of gastrointestinal cancers and gastrointestinal microbiota. Front Endocrinol (Lausanne) 2023; 14:1179413. [PMID: 37124729 PMCID: PMC10133721 DOI: 10.3389/fendo.2023.1179413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Affiliation(s)
- Yang Mi
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Furhan Iqbal
- Institute of Zoology, Bahauddin Zakariya University, Multan, Pakistan
| | - Nasir Mahmood
- Department of Biochemistry, Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Ihtisham Bukhari
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Pengyuan Zheng, ; Ihtisham Bukhari,
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Pengyuan Zheng, ; Ihtisham Bukhari,
| |
Collapse
|
10
|
Gut microbiome dysbiosis in malnutrition. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:205-229. [DOI: 10.1016/bs.pmbts.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|