1
|
Ntawubizi M, Mukamuhirwa ML. A reflexion on the oxidative stress and animal welfare: a review. Trop Anim Health Prod 2024; 56:396. [PMID: 39601945 DOI: 10.1007/s11250-024-04238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
A wide range of studies have documented the role of oxidative stress in the development of chronic pathological disorders and even in the aging itself. However, its significance to modern animal health and welfare remains neglected. Oxidative stress in biological systems refers to a disturbance in the balance between pro-oxidants and antioxidants in favour of the former, leading to potential damage of biomolecules. In farm animals, oxidative stress may be involved in several pathological conditions, including those that are relevant for animal production and the general welfare of the individuals, resulting in some cases in irreversible losses. The oxidative stress concept and how it may result in disease or be prevented are complex questions with no simple answers and therefore, call professionals for deep reflection, to maintain a high standard of animal welfare and production. The aim of this review was to gather relevant information on the characteristics of pro-oxidants and antioxidant as well as their significance in animal production systems.
Collapse
Affiliation(s)
- Martin Ntawubizi
- School of Veterinary Medicine, University of Rwanda-Nyagatare Campus, P.O. Box 57, Nyagatare, Rwanda.
| | - Marie Louise Mukamuhirwa
- School of Veterinary Medicine, University of Rwanda-Nyagatare Campus, P.O. Box 57, Nyagatare, Rwanda
| |
Collapse
|
2
|
Wei H, Liu J, Liu M, Zhang H, Chen Y. Rumen fermentation and microbial diversity of sheep fed a high-concentrate diet supplemented with hydroethanolic extract of walnut green husks. Anim Biosci 2024; 37:655-667. [PMID: 37946420 PMCID: PMC10915217 DOI: 10.5713/ab.23.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/16/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE This study aimed to assess the impact of a hydroethanolic extract of walnut green husks (WGH) on rumen fermentation and the diversity of bacteria, methanogenic archaea, and fungi in sheep fed a high-concentrate diet. METHODS Five healthy small-tailed Han ewes with permanent rumen fistula were selected and housed in individual pens. This study adopted a self-controlled and crossover design with a control period and an experimental period. During the control period, the animals were fed a basal diet (with a ratio of concentrate to roughage of 65:35), while during the treatment period, the animals were fed the basal diet supplemented with 0.5% hydroethanolic extract of WGH. Fermentation parameters, digestive enzyme activities, and microbial diversity in rumen fluid were analyzed. RESULTS Supplementation of hydroethanolic extract of WGH had no significant effect on feed intake, concentrations of total volatile fatty acids, isovalerate, ammonia nitrogen, and microbial protein (p>0.05). However, the ruminal pH, concentrations of acetate, butyrate and isobutyrate, the ratio of acetate to propionate, protozoa count, and the activities of filter paper cellulase and cellobiase were significantly increased (p<0.05), while concentrations of propionate and valerate were significantly decreased (p<0.05). Moreover, 16S rRNA gene sequencing revealed that the relative abundance of rumen bacteria Christensenellaceae R7 group, Saccharofermentans, and Ruminococcaceae NK4A214 group were significantly increased, while Ruminococcus gauvreauii group, Prevotella 7 were significantly decreased (p<0.05). The relative abundance of the fungus Pseudomonas significantly increased, while Basidiomycota, Fusarium, and Alternaria significantly decreased (p<0.05). However, there was no significant change in the community structure of methanogenic archaea. CONCLUSION Supplementation of hydroethanolic extract of WGH to a high-concentrate diet improved the ruminal fermentation, altered the structure of ruminal bacterial and fungal communities, and exhibited beneficial effects in alleviating subacute rumen acidosis of sheep.
Collapse
Affiliation(s)
- Huan Wei
- Laboratory of Nutrition for Meat & Dairy Herbivore, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052,
China
| | - Jiancheng Liu
- Laboratory of Nutrition for Meat & Dairy Herbivore, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052,
China
| | - Mengjian Liu
- Laboratory of Nutrition for Meat & Dairy Herbivore, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052,
China
| | - Huiling Zhang
- Laboratory of Nutrition for Meat & Dairy Herbivore, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052,
China
| | - Yong Chen
- Laboratory of Nutrition for Meat & Dairy Herbivore, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052,
China
| |
Collapse
|
3
|
Wang C, Fan J, Ma K, Wang H, Li D, Li T, Ma Y. Effects of adding Allium mongolicum Regel powder and yeast cultures to diet on rumen microbial flora of Tibetan sheep ( Ovis aries). Front Vet Sci 2024; 11:1283437. [PMID: 38450026 PMCID: PMC10914970 DOI: 10.3389/fvets.2024.1283437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
The purpose of this experiment was to study the effect of Allium mongolicum Regel powder (AMR) and yeast cultures (YC) on rumen microbial diversity in Tibetan sheep in different Ecological niches. A total of 40 male Tibetan lambs with an initial weight of 18.56 ± 1.49 kg (6 months old) were selected and divided into four groups (10 sheep/pen; n = 10). In the Control Group, each animal was grazed for 8 h per day, in Group I, each animal was supplemented with 200 g of concentrate per day, in Group II, each animal was supplemented with 200 g of concentrate and 10 g of AMR per day, in Group III, each animal was supplemented with 200 g of concentrate and 20 g of YC per day. The experiment lasted 82 days and consisted of a 7-day per-feeding period and a 75-day formal period. The results indicated that at the phylum level, the abundance of Bacteroidota and Verrucomimicrobiota in L-Group II and L-Group III was increased, while the abundance of Proteobacteria was decreased in the LA (Liquid-Associated) groups. The proportion of F/B in S-Group II and S-Group III was increased compared to S-Group I and S-CON in the SA (Soild-Associated) group. At the genus level, the abundance of uncultured_rumen_bacterium and Eubacterium_ruminantium_group in L-Group II and L-Group III was increased. Furthermore, while the abundance of Rikenellaceae_RC9_gut_group was decreased in the LA, the abundance of Prevotella and Eubacterium_ruminantium_group was increased in the S-Group II and S-Group III compared to S-Group I and S-CON. The abundance of probable_genus_10 was the highest in S-Group II in the SA group. After the addition of YC and AMR, there was an increase in rumen microbial abundance, which was found to be beneficial for the stability of rumen flora and had a positive impact on rumen health.
Collapse
Affiliation(s)
- Chunhui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Juan Fan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Keyan Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Dengpan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| |
Collapse
|
4
|
Li D, Yang H, Li Q, Ma K, Wang H, Wang C, Li T, Ma Y. Prickly Ash Seeds improve immunity of Hu sheep by changing the diversity and structure of gut microbiota. Front Microbiol 2023; 14:1273714. [PMID: 38029081 PMCID: PMC10644117 DOI: 10.3389/fmicb.2023.1273714] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Prickly Ash Seeds (PAS), as a traditional Chinese medicinal herb, have pharmacological effects such as anti-asthma, anti-thrombotic, and anti-bacterial, but their impact on gut microbiota is still unclear. This study used a full-length 16 s rRNA gene sequencing technique to determine the effect of adding PAS to the diet on the structure and distribution of gut microbiota in Hu sheep. All lambs were randomly divided into two groups, the CK group was fed with a basal ration, and the LZS group was given a basal diet with 3% of PAS added to the ration. The levels of inflammatory factors (IL-10, IL-1β, and TNF-α) in intestinal tissues were measured by enzyme-linked immunosorbent assay (ELISA) for Hu sheep in the CK and LZS group. The results indicate that PAS can increase the diversity and richness of gut microbiota, and can affect the community composition of gut microbiota. LEfSe analysis revealed that Verrucomicrobiota, Kiritimatiella, WCHB 41, and uncultured_rumen_bacterium were significantly enriched in the LZS group. KEGG pathway analysis found that LZS was significantly higher than the CK group in the Excretory system, Folding, sorting and degradation, and Immune system pathways (p < 0.05). The results of ELISA assay showed that the level of IL-10 was significantly higher in the LZS group than in the CK group (p < 0.05), and the levels of TNF-α and IL-1β were significantly higher in the CK group than in the LZS group (p < 0.05). LEfSe analysis revealed that the dominant flora in the large intestine segment changed from Bacteroidota and Gammaproteobacteria to Akkermansiaceae and Verrucomicrobiae after PAS addition to Hu sheep lambs; the dominant flora in the small intestine segment changed from Lactobacillales and Aeriscardovia to Kiritimatiellae and WCHB1 41. In conclusion, the addition of PAS to sheep diets can increase the number and types of beneficial bacteria in the intestinal tract, improve lamb immunity, and reduce intestinal inflammation. It provides new insights into healthy sheep production.
Collapse
Affiliation(s)
- Dengpan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Hai Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Keyan Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Chunhui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| |
Collapse
|
5
|
Wang X, Bai C, Khas Erdene, Umair AM, Cao Q, Ao C, Jiang L. Potential modulating effects of Allium mongolicum regel ethanol extract on rumen fermentation and biohydrogenation bacteria of dairy cows in vitro. Front Microbiol 2023; 14:1272691. [PMID: 38029125 PMCID: PMC10643186 DOI: 10.3389/fmicb.2023.1272691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The objective of this study was to evaluate the potential modulating effects of Allium mongolicum regel ethanol extract (AME) on rumen fermentation and biohydrogenation (BH) bacteria in vitro. Four Holstein cows were used as donors for the rumen fluid used in this study. In experiment 1, five treatments (supplemented with 0 mg/g, 1 mg/g, 2 mg/g, 3 mg/g, and 4 mg/g of AME based on fermentation substrate, respectively) were conducted to evaluate the effects of different levels of AME on fermentation status in vitro. The results showed that after 24 h of fermentation, MCP was reduced with AME supplementation (p < 0.05), and the multiple combinations of different combinations index (MFAEI) value was the highest with 3 mg/g of AME. In experiment 2, six treatments were constructed which contained: control group (A1); the unsaturated fatty acid (UFA) mixture at 3% concentration (A2); the mixture of A2 and 3 mg/g of AME (A3); 3 mg/g of AME (A4); the UFA mixture at 1.5% concentration (A5); the mixture of A5 and 3 mg/g of AME (A6). The abundance of bacterial species involved in BH was measured to evaluate the potential modulating effect of AME on rumen BH in vitro. Compared with the A1 group, the A3, A4, and A6 groups both showed significant decreases in the abundance of rumen BH microbial flora including Butyrivibrio proteoclasticus, Butyrivibrio fibrisolvens, Ruminococcus albus and Clostridium aminophilum (p < 0.01). The A3 group was less inhibitory than A4 in the abundance of B. proteoclasticus, B. fibrisolvens, and R. albus, and the inhibitory effect of the A6 group was higher than that of A4. In conclusion, the supplementation with 3 mg/g of AME could modulate the rumen fermentation and affect BH key bacteria, which suggests that AME may have the potential to inhibit the rumen BH of dairy cows.
Collapse
Affiliation(s)
- XiaoYuan Wang
- Key Laboratory of Animal Nutrition and Feed Science in Inner Mongolia Autonomous Region Universities, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chen Bai
- Key Laboratory of Animal Nutrition and Feed Science in Inner Mongolia Autonomous Region Universities, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Khas Erdene
- Key Laboratory of Animal Nutrition and Feed Science in Inner Mongolia Autonomous Region Universities, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ashraf Muhammad Umair
- Key Laboratory of Animal Nutrition and Feed Science in Inner Mongolia Autonomous Region Universities, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - QiNa Cao
- Key Laboratory of Animal Nutrition and Feed Science in Inner Mongolia Autonomous Region Universities, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - ChangJin Ao
- Key Laboratory of Animal Nutrition and Feed Science in Inner Mongolia Autonomous Region Universities, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - LinShu Jiang
- Beijing Key Laboratory of Dairy Cattle Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
6
|
Zhang P, Jiang G, Ma C, Wang Y, Yan E, He L, Guo J, Zhang X, Yin J. Dietary supplementation of laminarin improves the reproductive performance of sows and the growth of suckling piglets. J Anim Sci Biotechnol 2023; 14:114. [PMID: 37689725 PMCID: PMC10493022 DOI: 10.1186/s40104-023-00920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/13/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Maternal nutrition is essential in keeping a highly efficient production system in the pig industry. Laminarin has been shown to improve antioxidant capacity, reduce the inflammatory response, and favor the homeostasis of intestinal microbiota. However, the effect of dietary supplementation of laminarin on the reproductive performance of sows and the growth of suckling offspring remains unknown. METHODS A total of 40 Landrace × Yorkshire multiparous sows on d 85 of gestation, similar in age, body weight (BW), parity and reproductive performance, were randomly divided into four dietary treatments with 10 sows per treatment, receiving a control diet (basal pregnancy or lactating diets) and a basal diet supplemented with 0.025%, 0.05% and 0.10% laminarin, respectively. The experiment lasted from d 85 of gestation to d 21 of lactation. RESULTS Laminarin supplementation linearly increased number born alive per litter (P = 0.03), average daily feed intake (ADFI, P < 0.01), and total milk yield of sows during the lactation of 1-21 d (P = 0.02). Furthermore, maternal laminarin supplementation increased the average daily gain (ADG) of piglets while tending to reduce the culling and death rate before weaning. In addition, alterations to the composition of colostrum and milk, as well as to serum inflammatory cytokines and immunoglobulins of sows were observed. The fecal microbiota profile of sows supported the improvement of reproductive performance in sows and the growth performance in suckling offspring. CONCLUSIONS Dietary supplementation of laminarin during late pregnancy and lactation could significantly improve reproductive performance of sows and growth performance of piglets.
Collapse
Affiliation(s)
- Pengguang Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guoyuan Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chenghong Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Enfa Yan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianxin Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Yu S, Li L, Zhao H, Liu M, Jiang L, Zhao Y. Citrus flavonoid extracts alter the profiling of rumen antibiotic resistance genes and virulence factors of dairy cows. Front Microbiol 2023; 14:1201262. [PMID: 37362928 PMCID: PMC10289158 DOI: 10.3389/fmicb.2023.1201262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Citrus flavonoid extracts (CFE) have the potential to reduce rumen inflammation, improve ruminal function, and enhance production performance in ruminants. Our previous studies have investigated the effects of CFE on the structure and function of rumen microbiota in dairy cows. However, it remains unclear whether CFE affects the prevalence of antibiotic resistance genes (ARG) and virulence factors genes (VFG) in the rumen. Therefore, metagenomics was used to identify the rumen ARG and VFG in lactating dairy cows fed with CFE diets. The results showed that CFE significantly reduced the levels of Multidrug and Antiphagocytosis in the rumen (p < 0.05) and increased the levels of Tetracycline, Iron uptake system, and Magnesium uptake system (p < 0.05). Furthermore, the changes were found to have associations with the phylum Lentisphaerae. It was concluded that CFE could be utilized as a natural plant product to regulate virulence factors and antibiotic resistance of rumen microbiota, thereby improving rumen homeostasis and the health of dairy cows.
Collapse
Affiliation(s)
- Shiqiang Yu
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Huiying Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ming Liu
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Beinong Enterprise Management Co., Ltd., Beijing, China
| |
Collapse
|
8
|
Orzuna-Orzuna JF, Dorantes-Iturbide G, Lara-Bueno A, Chay-Canul AJ, Miranda-Romero LA, Mendoza-Martínez GD. Meta-analysis of flavonoids use into beef and dairy cattle diet: Performance, antioxidant status, ruminal fermentation, meat quality, and milk composition. Front Vet Sci 2023; 10:1134925. [PMID: 36876000 PMCID: PMC9975267 DOI: 10.3389/fvets.2023.1134925] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
The objective of this study was to evaluate the effects of dietary supplementation with flavonoids (FLAs) on animal performance, diet digestibility, antioxidant status in blood serum, rumen parameters, meat quality, and milk composition in beef and dairy cattle through a meta-analysis. Thirty-six peer-reviewed publications were included in the data set. The weighted mean differences (WMD) between the FLAs treatments and the control treatment were used to assess the effect size. Dietary supplementation with FLAs decreased feed conversion ratio (WMD = -0.340 kg/kg; p = 0.050) and increased (p < 0.05) dry matter intake (WMD = 0.191 kg/d), dry matter digestibility (WMD = 15.283 g/kg of DM), and daily weight gain (WMD = 0.061 kg/d). In blood serum, FLAs supplementation decreased the serum concentration of malondialdehyde (WMD = -0.779 nmol/mL; p < 0.001) and increased (p < 0.01) the serum concentration of superoxide dismutase (WMD = 8.516 U/mL), glutathione peroxidase (WMD = 12.400 U/mL) and total antioxidant capacity (WMD = 0.771 U/mL). A higher ruminal propionate concentration (WMD = 0.926 mol/100 mol; p = 008) was observed in response to FLAs supplementation. In meat, the dietary inclusion of FLAs decreased (p < 0.05) shear force (WMD = -1.018 kgf/cm2), malondialdehyde content (WMD = -0.080 mg/kg of meat), and yellowness (WMD = -0.460). Supplementation with FLAs decreased milk somatic cell count (WMD = -0.251 × 103 cells/mL; p < 0.001) and increased (p < 0.01) milk production (WMD = 1.348 kg/d), milk protein content (WMD = 0.080/100 g) and milk fat content (WMD = 0.142/100 g). In conclusion, dietary supplementation with FLAs improves animal performance and nutrient digestibility in cattle. In addition, FLAs improve the antioxidant status in blood serum and the quality of meat and milk.
Collapse
|
9
|
Effects of the Dietary Inclusion of Allium mongolicum Regel Extract on Serum Index and Meat Quality in Small-Tailed Han Sheep. Animals (Basel) 2022; 13:ani13010110. [PMID: 36611719 PMCID: PMC9817714 DOI: 10.3390/ani13010110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to evaluate the effects of Allium mongolicum Regel ethanol extract (AME) on the serum index and meat quality of lambs. A total of 30 male Small-tailed Han sheep (3 months old) with an average weight of 33.60 ± 1.23 kg were divided randomly into one of two groups: the control group (CON) was offered a basal diet, and the AME group was offered a basal diet with supplementation 2.8 g·lamb−1·day−1 AME. The trial lasted for 75 days. AME supplementation significantly decreased the concentration of triglyceride and total cholesterol (p < 0.05), and tended to lower the concentration of non-esterified fatty acids (0.05 < p < 0.1), but significantly increased the concentration of high-density lipoprotein, leptin, and insulin (p < 0.05) in the serum of lambs. AME also decreased cooking losses and shear force and increased the content of intramuscular fat in the longissimus dorsi (LD) muscle of lambs (p < 0.05). In addition, there was no difference in the composition of hydrolyzed protein amino acids in the LD muscle among treatments (p > 0.05). However, AME changed the composition of free amino acids and promoted MUFA and PUFA deposition in the LD muscle of the lambs. These findings indicate that a diet supplemented with AME may improve the lipid metabolic capacity and meat quality of lambs.
Collapse
|