1
|
Chin WC, Zhou YZ, Wang HY, Feng YT, Yang RY, Huang ZF, Yang YL. Bacterial polyynes uncovered: a journey through their bioactive properties, biosynthetic mechanisms, and sustainable production strategies. Nat Prod Rep 2024; 41:977-989. [PMID: 38284321 DOI: 10.1039/d3np00059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Covering: up to 2023Conjugated polyynes are natural compounds characterized by alternating single and triple carbon-carbon bonds, endowing them with distinct physicochemical traits and a range of biological activities. While traditionally sourced mainly from plants, recent investigations have revealed many compounds originating from bacterial strains. This review synthesizes current research on bacterial-derived conjugated polyynes, delving into their biosynthetic routes, underscoring the variety in their molecular structures, and examining their potential applications in biotechnology. Additionally, we outline future directions for metabolic and protein engineering to establish more robust and stable platforms for their production.
Collapse
Affiliation(s)
- Wei-Chih Chin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Yang-Zhi Zhou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Hao-Yung Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi, Taiwan
| | - Yu-Ting Feng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Ru-Yin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Zih-Fang Huang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| |
Collapse
|
2
|
Zhou Y, Chen H, Jiang H, Yao Q, Zhu H. Characteristics of a lipase ArEstA with lytic activity against drug-resistant pathogen from a novel myxobacterium, Archangium lipolyticum sp. nov. Front Microbiol 2024; 14:1320827. [PMID: 38239728 PMCID: PMC10794672 DOI: 10.3389/fmicb.2023.1320827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Bacteriolytic myxobacteria are versatile micropredators and are proposed as potential biocontrol agents against diverse bacterial and fungal pathogens. Isolation of new myxobacteria species and exploration of effective predatory products are necessary for successful biocontrol of pathogens. In this study, a myxobacterium strain CY-1 was isolated from a soil sample of a pig farm using the Escherichia coli baiting method. Based on the morphological observation, physiological test, 16S rRNA gene sequence, and genomic data, strain CY-1 was identified as a novel species of the myxobacterial genus Archangium, for which the name Archangium lipolyticum sp. nov. was proposed. Subsequent predation tests indicated that the strain efficiently lysed drug-resistant pathogens, with a higher predatory activity against E. coli 64 than Staphylococcus aureus GDMCC 1.771 (MRSA). The lysis of extracellular proteins against ester-bond-containing substrates (tributyrin, tween 80, egg-yolk, and autoclaved drug-resistant pathogens) inspired the mining of secreted predatory products with lipolytic activity. Furthermore, a lipase ArEstA was identified from the genome of CY-1, and the heterologously expressed and purified enzyme showed bacteriolytic activity against Gram-negative bacteria E. coli 64 but not against Gram-positive MRSA, possibly due to different accessibility of enzyme to lipid substrates in different preys. Our research not only provided a novel myxobacterium species and a candidate enzyme for the development of new biocontrol agents but also reported an experimental basis for further study on different mechanisms of secreted predatory products in myxobacterial killing and degrading of Gram-negative and Gram-positive preys.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Haixin Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongxia Jiang
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qing Yao
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Ahearne A, Phillips KE, Knehans T, Hoing M, Dowd SE, Stevens DC. Chromosomal organization of biosynthetic gene clusters, including those of nine novel species, suggests plasticity of myxobacterial specialized metabolism. Front Microbiol 2023; 14:1227206. [PMID: 37601375 PMCID: PMC10435759 DOI: 10.3389/fmicb.2023.1227206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Natural products discovered from bacteria provide critically needed therapeutic leads for drug discovery, and myxobacteria are an established source for metabolites with unique chemical scaffolds and biological activities. Myxobacterial genomes accommodate an exceptional number and variety of biosynthetic gene clusters (BGCs) which encode for features involved in specialized metabolism. Methods In this study, we describe the collection, sequencing, and genome mining of 20 myxobacteria isolated from rhizospheric soil samples collected in North America. Results Nine isolates were determined to be novel species of myxobacteria including representatives from the genera Archangium, Myxococcus, Nannocystis, Polyangium, Pyxidicoccus, Sorangium, and Stigmatella. Growth profiles, biochemical assays, and descriptions were provided for all proposed novel species. We assess the BGC content of all isolates and observe differences between Myxococcia and Polyangiia clusters. Discussion Continued discovery and sequencing of novel myxobacteria from the environment provide BGCs for the genome mining pipeline. Utilizing complete or near-complete genome sequences, we compare the chromosomal organization of BGCs of related myxobacteria from various genera and suggest that the spatial proximity of hybrid, modular clusters contributes to the metabolic adaptability of myxobacteria.
Collapse
Affiliation(s)
- Andrew Ahearne
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, United States
| | - Kayleigh E. Phillips
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, United States
| | - Thomas Knehans
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, United States
| | - Miranda Hoing
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, United States
| | - Scot E. Dowd
- Molecular Research LP (MR DNA), Shallowater, TX, United States
| | - David Cole Stevens
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, United States
| |
Collapse
|
4
|
Ahearne A, Phillips K, Knehans T, Hoing M, Dowd SE, Stevens DC. Chromosomal organization of biosynthetic gene clusters suggests plasticity of myxobacterial specialized metabolism including descriptions for nine novel species: Archangium lansinium sp. nov., Myxococcus landrumus sp. nov., Nannocystis bainbridgea sp. nov., Nannocystis poenicansa sp. nov., Nannocystis radixulma sp. nov., Polyangium mundeleinium sp. nov., Pyxidicoccus parkwaysis sp. nov., Sorangium aterium sp. nov., Stigmatella ashevillena sp. nov. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531766. [PMID: 36945379 PMCID: PMC10028903 DOI: 10.1101/2023.03.08.531766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Natural products discovered from bacteria provide critically needed therapeutic leads for drug discovery, and myxobacteria are an established source for metabolites with unique chemical scaffolds and biological activities. Myxobacterial genomes accommodate an exceptional number and variety of biosynthetic gene clusters (BGCs) which encode for features involved in specialized metabolism. Continued discovery and sequencing of novel myxobacteria from the environment provides BGCs for the genome mining pipeline. Herein, we describe the collection, sequencing, and genome mining of 20 myxobacteria isolated from rhizospheric soil samples collected in North America. Nine isolates where determined to be novel species of myxobacteria including representatives from the genera Archangium, Myxococcus, Nannocystis, Polyangium, Pyxidicoccus, Sorangium, and Stigmatella. Growth profiles, biochemical assays, and descriptions are provided for all proposed novel species. We assess the BGC content of all isolates and observe differences between Myxococcia and Polyangiia clusters. Utilizing complete or near complete genome sequences we compare the chromosomal organization of BGCs of related myxobacteria from various genera and suggest spatial proximity of hybrid, modular clusters contributes to the metabolic adaptability of myxobacteria.
Collapse
Affiliation(s)
- Andrew Ahearne
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Kayleigh Phillips
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Thomas Knehans
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Miranda Hoing
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Scot E. Dowd
- MR DNA, Molecular Research LP, Shallowater, TX 79363, USA
| | - D. Cole Stevens
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
5
|
Oren A, Göker M. Validation List no. 210. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 2023; 73. [PMID: 37000643 DOI: 10.1099/ijsem.0.005812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| |
Collapse
|
6
|
Wang C, Xiao Y, Wang Y, Liu Y, Yao Q, Zhu H. Comparative genomics and transcriptomics insight into myxobacterial metabolism potentials and multiple predatory strategies. Front Microbiol 2023; 14:1146523. [PMID: 37213496 PMCID: PMC10196010 DOI: 10.3389/fmicb.2023.1146523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
Myxobacteria are part of the phylum Myxococcota, encompassing four orders. Most of them display complex lifestyles and broad predation profiles. However, metabolic potential and predation mechanisms of different myxobacteria remains poorly understood. Herein, we used comparative genomics and transcriptomics to analyze metabolic potentials and differentially expressed gene (DEG) profiles of Myxococcus xanthus monoculture (Mx) compared to coculture with Escherichia coli (MxE) and Micrococcus luteus (MxM) prey. The results showed that myxobacteria had conspicuous metabolic deficiencies, various protein secretion systems (PSSs) and the common type II secretion system (T2SS). RNA-seq data demonstrated that M. xanthus overexpressed the potential predation DEGs, particularly those encoding T2SS, the tight adherence (Tad) pilus, different secondary metabolites (myxochelin A/B, myxoprincomide, myxovirescin A1, geosmin and myxalamide), glycosyl transferases and peptidase during predation. Furthermore, the myxalamide biosynthesis gene clusters, two hypothetical gene clusters and one arginine biosynthesis clusters were highly differential expressed in MxE versus MxM. Additionally, homologue proteins of the Tad (kil) system and five secondary metabolites were in different obligate or facultative predators. Finally, we provided a working model for exhibiting multiple predatory strategies when M. xanthus prey on M. luteus and E. coli. These results might spur application-oriented research on the development of novel antibacterial strategies.
Collapse
Affiliation(s)
- Chunling Wang
- College of Life Science, Huizhou University, Huizhou, Guangdong, China
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yi Xiao
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yong Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yumin Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Qing Yao
- College of Horticulture, South China Agricultural University, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, Guangdong, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- *Correspondence: Honghui Zhu,
| |
Collapse
|