1
|
Gu X, Zhou F, Jiang M, Lin M, Dai Y, Wang W, Xiong Z, Liu H, Xu M, Wang L. Berberine inhibits the tarO gene to impact MRSA cell wall synthesis. Sci Rep 2025; 15:6927. [PMID: 40011701 PMCID: PMC11865438 DOI: 10.1038/s41598-025-91724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/24/2025] [Indexed: 02/28/2025] Open
Abstract
Hospital and community-acquired infections caused by Methicillin-resistant Staphylococcus aureus (MRSA) have emerged as a significant public health challenge, highlighting the urgent need for novel antibiotics. In response, the antibacterial properties of natural products derived from traditional plants are being investigated as potential treatments for multidrug resistance. This study demonstrates the potent antibacterialimoact of Berberine (BBR), a compound derived from traditional Chinese medicine, against the community-associated MRSA (CA-MRSA) strain USA300 LAC. Through a comprehensive series of in vitro antibacterial experiments and gene-level investigations, we discovered that BBR compromises the integrity of the USA300 LAC cell wall structure. This mechanism of action is likely attributed to the inhibition of the tarO gene, which encodes a critical enzyme in the initial stage of wall teichoic acid (WTA) biosynthesis, thereby suppressing WTA synthesis, an essential component of the cell wall. Additionally, BBR upregulates the expression of lytic enzymes LytM and SsaA, resulting in accelerated hydrolysis of peptidoglycan, a major structural element of the cell wall. This disruption ultimately leads to the destruction of the USA300 LAC cell wall. Moreover, combined antibacterial assays reveal that BBR synergistically enhances the antibacterial effect of Oxacillin against USA300 LAC. Overall, our findings elucidate the antibacterial mechanism of BBR, a traditional Chinese medicine monomer, against MRSA and highlight its promising potential for clinical application in the treatment of MRSA.
Collapse
Affiliation(s)
- Xuemei Gu
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, Shanghai, China
| | - Fangfang Zhou
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, Shanghai, China
| | - Mingming Jiang
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, Shanghai, China
| | - Ming Lin
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, Shanghai, China
| | - Yue Dai
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, Shanghai, China
| | - Wei Wang
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, Shanghai, China
| | - Zhongbo Xiong
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, Shanghai, China
| | - Han Liu
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, Shanghai, China
| | - Minyi Xu
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, Shanghai, China.
| | - Lei Wang
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, Shanghai, China.
| |
Collapse
|
2
|
Yang S, Wang Y, Yang Y, Zhang Z, Li F, Tao L, Han L, Guo S, Zhang Y, Jiang Y, Chang J, Yang H. Design, Synthesis, and Biological Evaluation of 1,3,4-Thiadiazole Derivatives as Novel Potent Peptide Deformylase Inhibitors for Combating Drug-Resistant Gram-Positive and -Negative Bacteria. J Med Chem 2025; 68:2942-2962. [PMID: 39772466 DOI: 10.1021/acs.jmedchem.4c02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The prevalence of drug-resistant bacteria is a major challenge throughout the world, especially with respect to Gram-negative bacteria, such as drug-resistant Acinetobacter baumannii, which are regarded as the greatest bacterial threat to human health by the World Health Organization (WHO). In this work, 1,3,4-thiadiazole was introduced into the main skeleton of the classical peptidomimetic peptide deformylase (PDF) inhibitor in pursuit of highly efficient and broad-spectrum bacteriostatic drugs. Upon detailed structure-activity relationship study, PDF inhibitors that possess satisfactory activity against both Gram-positive and Gram-negative bacteria as well as a lower potential for methemoglobin toxicity were screened out. The mechanism of the empowered antibacterial activity against Gram-negative bacteria was also investigated. Finally, for the first time, remarkable protective efficacy against drug-resistant A. baumannii in a mouse model was achieved by a PDF inhibitor (compound 43). These findings can pave a way to new approaches to the development of novel broad-spectrum PDF inhibitors.
Collapse
Affiliation(s)
- Shouning Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yaru Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yujie Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Zhiqin Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Fengfeng Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Lingling Tao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Ling Han
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Shenghai Guo
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Ying Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yuqin Jiang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Huayan Yang
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
3
|
Yin L, Guo Y, Xv X, Dai Y, Li L, Sun F, Lv X, Shu G, Liang X, He C, Xu Z, Ouyang P. Cinnamaldehyde nanoemulsion decorated with rhamnolipid for inhibition of methicillin-resistant Staphylococcus aureus biofilm formation: in vitro and in vivo assessment. Front Microbiol 2024; 15:1514659. [PMID: 39777149 PMCID: PMC11703839 DOI: 10.3389/fmicb.2024.1514659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Background Staphylococcus aureus (S. aureus) biofilm associated infections are prevalent and persistent, posing a serious threat to human health and causing significant economic losses in animal husbandry. Nanoemulsions demonstrate significant potential in the treatment of bacterial biofilm associated infections due to their unique physical, chemical and biological properties. In this study, a novel cinnamaldehyde nanoemulsion with the ability to penetrate biofilm structures and eliminate biofilms was developed. Methods The formulation of cinnamaldehyde nanoemulsion (Cin-NE) combined with rhamnolipid (RHL) was developed by self-assembly, and the efficacies of this formulation in inhibiting S. aureus biofilm associated infections were assessed through in vitro assays and in vivo experiments by a mouse skin wound healing model. Results The particle size of the selected Cin-NE formulation was 13.66 ± 0.08 nm, and the Cin-RHL-NE formulation was 20.45 ± 0.25 nm. The selected Cin-RHL-NE formulation was stable at 4, 25, and 37°C. Furthermore, the Minimum Inhibitory Concentration (MIC) value of Cin-RHL-NE against MRSA was two-fold lower than drug solution. Confocal laser scanning microscopy (CLSM) revealed the superior efficacy of Cin-RHL-NE in eradicating MRSA biofilms while maintaining the Cin's inherent functional properties. The efficacy of Cin-RHL-NE in the mouse skin wound healing model was superior to other formulation. Conclusion These findings highlight the potential of the formulation Cin-RHL-NE for eradicating biofilms, and effective in treating notoriously persistent bacterial infections. The Cin-RHL-NE can used as a dosage form of Cin application to bacterial biofilm associated infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
4
|
Han J, Chen Y, Xiang X, Wang T, Shen J, Zhang N, Liang C, Liu X, Ma X. A Comparative Analysis of the Antibacterial Spectrum of Ultrasmall Manganese Ferrite Nanozymes with Varied Surface Modifications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38489475 DOI: 10.1021/acsami.3c16490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Bacterial infectious diseases pose a significant global challenge. However, conventional antibacterial agents exhibit limited therapeutic effectiveness due to the emergence of drug resistance, necessitating the exploration of novel antibacterial strategies. Nanozymes have emerged as a highly promising alternative to antibiotics, owing to their particular catalytic activities against pathogens. Herein, we synthesized ultrasmall-sized MnFe2O4 nanozymes with different charges (MnFe2O4-COOH, MnFe2O4-PEG, MnFe2O4-NH2) and assessed their antibacterial capabilities. It was found that MnFe2O4 nanozymes exhibited both antibacterial and antibiofilm properties attributed to their excellent peroxidase-like activities and small sizes, enabling them to penetrate biofilms and interact with bacteria. Moreover, MnFe2O4 nanozymes effectively expedite wound healing within 12 days and facilitate tissue repair and regeneration while concurrently reducing inflammation. MnFe2O4-COOH displayed favorable antibacterial activity against Gram-positive bacteria, with 80% bacterial removal efficiency against MRSA by interacting with phosphatidylglycerol (PG) and cardiolipin (CL) of the membrane. By interacting with negatively charged bacteria surfaces, MnFe2O4-NH2 demonstrated the most significant and broad-spectrum antibacterial activity, with 95 and 85% removal efficiency against methicillin-resistant Staphylococcus aureus (MRSA) and P. aeruginosa, respectively. MnFe2O4-PEG dissipated membrane potential and reduced ATP levels in MRSA and P. aeruginosa, showing relatively broad-spectrum antibacterial activity. To conclude, MnFe2O4 nanozymes offer a promising therapeutic approach for treating wound infections.
Collapse
Affiliation(s)
- Junhua Han
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Yingxian Chen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xin Xiang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Tingting Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Nan Zhang
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Chen Liang
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Xiaoli Liu
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Xiaowei Ma
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, P. R. China
| |
Collapse
|
5
|
Sharifi E, Jamaledin R, Familsattarian F, Nejaddehbashi F, Bagheri M, Chehelgerdi M, Nazarzadeh Zare E, Akhavan O. Bioactive chitosan/poly(ethyleneoxide)/CuFe 2O 4 nanofibers for potential wound healing. ENVIRONMENTAL RESEARCH 2023; 239:117448. [PMID: 37858692 DOI: 10.1016/j.envres.2023.117448] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
Wound healing is a complex process that often requires intervention to accelerate tissue regeneration and prevent complications. The goal of this research was to assess the potential of bioactive chitosan@poly (ethylene oxide)@CuFe2O4 (CS@PEO@CF) nanofibers for wound healing applications by evaluating their morphology, mechanical properties, and magnetic behavior. Additionally, in vitro and in vivo studies were conducted to investigate their effectiveness in promoting wound healing treatment. The nanoparticles exhibited remarkable antibacterial and antioxidant properties. In the nanofibrous mats, the optimal concentration of CuFe2O4 was determined to be 0.1% Wt/V. Importantly, this concentration did not adversely affect the viability of fibroblast cells, which also identified the ideal concentration. The scaffold's hemocompatibility revealed nonhemolytic properties. Additionally, a wound-healing experiment demonstrated significant migration and growth of fibroblast cells at the edge of the wound. These nanofibrous mats are applied to treat rats with full-thickness excisional wounds. Histopathological analysis of these wounds showed enhanced wound healing ability, as well as regeneration of sebaceous glands and hair follicles within the skin. Overall, the developed wound dressing comprises CuFe2O4 nanoparticles incorporated into CS/PEO nanofibrous mats demonstrating its potential for successful application in wound treatment.
Collapse
Affiliation(s)
- Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Jamaledin
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Fatemeh Familsattarian
- Department of Materials Engineering, Bu-Ali Sina University, Hamedan, Iran, P.O.B: 65178-38695
| | - Fereshteh Nejaddehbashi
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Bagheri
- Department of Tissue Engineering and Applied Cellular Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran; Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran.
| |
Collapse
|