1
|
Lu X, Du X, Zhong D, Li R, Cao J, Huang S, Wang Y. Nanopore Environmental Analysis. JACS AU 2025; 5:1570-1590. [PMID: 40313842 PMCID: PMC12042043 DOI: 10.1021/jacsau.5c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/26/2025] [Accepted: 03/12/2025] [Indexed: 05/03/2025]
Abstract
As global pollution continues to escalate, timely and accurate monitoring is essential for guiding pollution governance and safeguarding public health. The increasing diversity of pollutants across environmental matrices poses a significant challenge for instrumental analysis methods, which often require labor-intensive and time-consuming sample pretreatment. Nanopore technology, an emerging single-molecule technique, presents a promising solution by enabling the rapid identification of multiple targets within complex mixtures with minimal sample preparation. A wide range of pollutants have been characterized using natural biological nanopores or artificial solid-state nanopores, and their distinct advantages include simple sample preparation, high sensitivity, and rapid onsite analysis. In particular, long-read nanopore sequencing has led to dramatic improvements in the analyses of environmental microbial communities, allows species-level taxonomic assignment using amplicon sequencing, and simplifies the assembly of metagenomes. In this Perspective, we review the latest advancements in analyzing chemical and biological pollutants through nanopore sensing and sequencing techniques. We also explore the challenges that remain in this rapidly evolving field and provide an outlook on the potential for nanopore environmental analysis to transform pollution monitoring, risk assessment, and public health protection.
Collapse
Affiliation(s)
- Xiaofeng Lu
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, China
- Institute
for the Environment and Health, Nanjing
University Suzhou Campus, Suzhou 215163, China
| | - Xiaoyu Du
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, China
- Institute
for the Environment and Health, Nanjing
University Suzhou Campus, Suzhou 215163, China
| | - Dong Zhong
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, China
- Institute
for the Environment and Health, Nanjing
University Suzhou Campus, Suzhou 215163, China
| | - Renjie Li
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, China
- Institute
for the Environment and Health, Nanjing
University Suzhou Campus, Suzhou 215163, China
| | - Junjie Cao
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, China
- Institute
for the Environment and Health, Nanjing
University Suzhou Campus, Suzhou 215163, China
| | - Shuo Huang
- State
Key Laboratory of Analytical Chemistry for Life Sciences, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yuqin Wang
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, China
- Institute
for the Environment and Health, Nanjing
University Suzhou Campus, Suzhou 215163, China
| |
Collapse
|
2
|
Batool U, Tromas N, Simon DF, Sauvé S, Shapiro BJ, Ahmed M. Snapshot of cyanobacterial toxins in Pakistani freshwater bodies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24648-24661. [PMID: 38448773 DOI: 10.1007/s11356-024-32744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Cyanobacteria are known to produce diverse secondary metabolites that are toxic to aquatic ecosystems and human health. However, data about the cyanotoxins occurrence and cyanobacterial diversity in Pakistan's drinking water reservoirs is scarce. In this study, we first investigated the presence of microcystin, saxitoxin, and anatoxin in 12 water bodies using an enzyme-linked immunosorbent assay (ELISA). The observed cyanotoxin values for the risk quotient (RQ) determined by ELISA indicated a potential risk for aquatic life and human health. Based on this result, we made a more in-depth investigation with a subset of water bodies (served as major public water sources) to analyze the cyanotoxins dynamics and identify potential producers. We therefore quantified the distribution of 17 cyanotoxins, including 12 microcystin congeners using a high-performance liquid chromatography-high-resolution tandem mass spectrometry/mass spectrometry (HPLC-HRMS/MS). Our results revealed for the first time the co-occurrence of multiple cyanotoxins and the presence of cylindrospermopsin in an artificial reservoir (Rawal Lake) and a semi-saline lake (Kallar Kahar). We also quantified several microcystin congeners in a river (Panjnad) with MC-LR and MC-RR being the most prevalent and abundant. To identify potential cyanotoxin producers, the composition of the cyanobacterial community was characterized by shotgun metagenomics sequencing. Despite the noticeable presence of cyanotoxins, Cyanobacteria were not abundant. Synechococcus was the most abundant cyanobacterial genus found followed by a small amount of Anabaena, Cyanobium, Microcystis, and Dolichospermum. Moreover, when we looked at the cyanotoxins genes coverage, we never found a complete microcystin mcy operon. To our knowledge, this is the first snapshot sampling of water bodies in Pakistan. Our results would not only help to understand the geographical spread of cyanotoxin in Pakistan but would also help to improve cyanotoxin risk assessment strategies by screening a variety of cyanobacterial toxins and confirming that cyanotoxin quantification is not necessarily related to producer abundance.
Collapse
Affiliation(s)
- Uzma Batool
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
- Department of Biological Sciences, Université de Montréal, Montreal, Canada
| | - Nicolas Tromas
- Department of Biological Sciences, Université de Montréal, Montreal, Canada.
- Department of Microbiology and Immunology, McGill University, Montreal, Canada.
| | - Dana F Simon
- Department of Chemistry, Université de Montréal, Montreal, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montreal, Canada
| | - B Jesse Shapiro
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Mehboob Ahmed
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
3
|
Liu MK, Tian XH, Liu CY, Liu Y, Tang YM. Microbiologic surveys for Baijiu fermentation are affected by experimental design. Int J Food Microbiol 2024; 413:110588. [PMID: 38266376 DOI: 10.1016/j.ijfoodmicro.2024.110588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
The traditional Chinese alcoholic beverage Baijiu is produced by spontaneous fermentation of grains under anaerobic conditions. While numerous studies have used metagenomic technology to investigate the microbiome of Baijiu brewing, the microbial succession mechanism of Baijiu brewing has not been fully clarified, and metagenomic strategies for microecology surveys have not been comprehensively evaluated. Using the fermentation process of strong-flavor Baijiu as a model, we compared the data for bacterial communities based on short read 16S rRNA variable regions, V3-V4, and full-length 16S regions, V1-V9, to whole metagenomic shotgun sequencing (WMS) to measure the effect of technology selection on phylogenetic and functional profiles. The results showed differences in bacterial compositions and their relation to volatiles and physicochemical variables between sequencing methods. Furthermore, the percentage of V3-V4 sequences assigned to species level was higher than the percentage of V1-V9 sequences according to SILVA taxonomy, but lower according to NCBI taxonomy (P < 0.05). In both SILVA and NCBI taxonomies, the relative abundances of bacterial communities at both the genus and family levels were more positively correlated with WMS data in the V3-V4 dataset than in the V1-V9 dataset. The WMS identified changes in abundances of multiple metabolic pathways during fermentation (P < 0.05), including "starch and sucrose metabolism," "galactose metabolism," and "fatty acid biosynthesis." Although functional predictions derived from 16S data show similar patterns to WMS, most metabolic pathway changes are uncorrelated (P > 0.05). This study provided new technical and biological insights into Baijiu production that may assist in selection of methodologies for studies of fermentation systems.
Collapse
Affiliation(s)
- Mao-Ke Liu
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China; Institute of Luzhou Liquor Making Science, Luzhou 646100, People's Republic of China; Deyang Branch of Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China.
| | - Xin-Hui Tian
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China; Institute of Luzhou Liquor Making Science, Luzhou 646100, People's Republic of China; Deyang Branch of Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China
| | - Cheng-Yuan Liu
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China; Institute of Luzhou Liquor Making Science, Luzhou 646100, People's Republic of China; Deyang Branch of Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China
| | - Yao Liu
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China; Institute of Luzhou Liquor Making Science, Luzhou 646100, People's Republic of China; Deyang Branch of Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China
| | - Yu-Ming Tang
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China; Institute of Luzhou Liquor Making Science, Luzhou 646100, People's Republic of China; Deyang Branch of Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China
| |
Collapse
|
4
|
Olivier SA, Bull MK, Strube ML, Murphy R, Ross T, Bowman JP, Chapman B. Long-read MinION™ sequencing of 16S and 16S-ITS-23S rRNA genes provides species-level resolution of Lactobacillaceae in mixed communities. Front Microbiol 2023; 14:1290756. [PMID: 38143859 PMCID: PMC10740194 DOI: 10.3389/fmicb.2023.1290756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The Lactobacillaceae are lactic acid bacteria harnessed to deliver important outcomes across numerous industries, and their unambiguous, species-level identification from mixed community environments is an important endeavor. Amplicon-based metataxonomics using short-read sequencing of partial 16S rRNA gene regions is widely used to support this, however, the high genetic similarity among Lactobacillaceae species restricts our ability to confidently describe these communities even at genus level. Long-read sequencing (LRS) of the whole 16S rRNA gene or the near complete rRNA operon (16S-ITS-23S) has the potential to improve this. We explored species ambiguity amongst Lactobacillaceae using in-silico tool RibDif2, which identified allele overlap when various partial and complete 16S rRNA gene and 16S-ITS-23S rRNA regions were amplified. We subsequently implemented LRS by MinION™ to compare the capacity of V3-V4, 16S and 16S-ITS-23S rRNA amplicons to accurately describe the diversity of a 20-species Lactobacillaceae mock community in practice. In-silico analysis identified more instances of allele/species overlap with V3-V4 amplicons (n = 43) compared to the 16S rRNA gene (n = 11) and partial (n = up to 15) or complete (n = 0) 16S-ITS-23S rRNA amplicons. With subsequent LRS of a DNA mock community, 80% of target species were identified using V3-V4 amplicons whilst the 16S rRNA gene and 16S-ITS-23S rRNA region amplicons resulted in 95 and 100% of target species being identified. A considerable reduction in false-positive identifications was also seen with 16S rRNA gene (n = 3) and 16S-ITS-23S rRNA region (n = 9) amplicons compared with V3-V4 amplicons (n = 43). Whilst the target species affected by allele overlap in V3-V4 and 16S rRNA gene sequenced mock communities were predicted by RibDif2, unpredicted species ambiguity was observed in 16S-ITS-23S rRNA sequenced communities. Considering the average nucleotide identity (ANI) between ambiguous species (~97%) and the basecall accuracy of our MinION™ sequencing protocol (96.4%), the misassignment of reads between closely related taxa is to be expected. With basecall accuracy exceeding 99% for recent MinION™ releases, the increased species-level differentiating power promised by longer amplicons like the 16S-ITS-23S rRNA region, may soon be fully realized.
Collapse
Affiliation(s)
- Sandra A. Olivier
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
- Quantal Bioscience Pty Ltd., Sydney, NSW, Australia
| | - Michelle K. Bull
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
- Quantal Bioscience Pty Ltd., Sydney, NSW, Australia
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Robert Murphy
- Department of Biology, Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Tom Ross
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - John P. Bowman
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Belinda Chapman
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
- Quantal Bioscience Pty Ltd., Sydney, NSW, Australia
| |
Collapse
|