1
|
Blanchais C, Pages C, Campos M, Boubekeur K, Contarin R, Orlando M, Siguier P, Laaberki MH, Cornet F, Charpentier X, Rousseau P. Interplay between the Xer recombination system and the dissemination of antibioresistance in Acinetobacter baumannii. Nucleic Acids Res 2025; 53:gkae1255. [PMID: 39777461 PMCID: PMC11705084 DOI: 10.1093/nar/gkae1255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Antibiotic-resistant infections are a pressing clinical challenge. Plasmids are known to accelerate the emergence of resistance by facilitating horizontal gene transfer of antibiotic resistance genes between bacteria. We explore this question in Acinetobacter baumannii, a globally emerging nosocomial pathogen responsible for a wide range of infections with a worrying accumulation of resistance, particularly involving plasmids. In this species, plasmids of the Rep_3 family harbor antibiotic resistance genes within variable regions flanked by potential site-specific recombination sites recognized by the XerCD recombinase. We first show that the Xer system of A. baumannii functions as described in Escherichia coli, resolving chromosome dimers at the dif site and recombining plasmid-carried sites. However, the multiple Xer recombination sites found in Rep_3 plasmids do not allow excision of plasmid fragments. Rather, they recombine to cointegrate plasmids, which could then evolve to exchange genes. Cointegrates represent a significant fraction of the plasmid population and their formation is controlled by the sequence of recombination sites, which determines the compatibility between recombination sites. We conclude that plasmids in A. baumannii frequently recombine by Xer recombination, allowing a high level of yet controlled plasticity in the acquisition and combination of antibiotic resistance genes.
Collapse
Affiliation(s)
- Corentin Blanchais
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 165 Rue Marianne Grunberg-Manago, 31400 Toulouse, France
- Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, 46 All. d'Italie, 69007 Lyon, France
| | - Carine Pages
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 165 Rue Marianne Grunberg-Manago, 31400 Toulouse, France
| | - Manuel Campos
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 165 Rue Marianne Grunberg-Manago, 31400 Toulouse, France
| | - Kenza Boubekeur
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 165 Rue Marianne Grunberg-Manago, 31400 Toulouse, France
| | - Rachel Contarin
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 165 Rue Marianne Grunberg-Manago, 31400 Toulouse, France
| | - Mathias Orlando
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 165 Rue Marianne Grunberg-Manago, 31400 Toulouse, France
| | - Patricia Siguier
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 165 Rue Marianne Grunberg-Manago, 31400 Toulouse, France
| | - Maria-Halima Laaberki
- Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, 46 All. d'Italie, 69007 Lyon, France
- VetAgro Sup, Université de Lyon, 1 avenue Bourgelat, 69280 Marcy-l'Etoile, France
| | - François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 165 Rue Marianne Grunberg-Manago, 31400 Toulouse, France
| | - Xavier Charpentier
- Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, 46 All. d'Italie, 69007 Lyon, France
| | - Philippe Rousseau
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 165 Rue Marianne Grunberg-Manago, 31400 Toulouse, France
| |
Collapse
|
2
|
Tobin LA, Cain AK, Djordjevic SP, Hamidian M. Transposons Carrying the aacC2e Aminoglycoside and blaTEM Beta-Lactam Resistance Genes in Acinetobacter. Microb Drug Resist 2024; 30:273-278. [PMID: 38593463 DOI: 10.1089/mdr.2023.0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
This study examines the genetic contexts and evolutionary steps responsible for the formation of the widely spread transposon Tn6925 carrying blaTEM and aacC2e, which confers resistance to beta-lactam and aminoglycoside antibiotics in Gram-negative bacteria. The blaTEM-1 and aacC2e genes were found in several transposons. They were first observed within an IS26 bounded 3.7 kb transposon (Tn6925) on several Acinetobacter baumannii plasmids located within a 4.7 kb dif module. Truncated and expanded variations of Tn6925 were found across other A. baumannii plasmids, as well as in other Gram-negative bacteria (including Vibrio cholerae). Moreover, blaTEM-1 and aacC2e were in much larger resistance-heavy transposons including the ISAba1-bounded 24.6 kb (here called Tn6927), found in an A. baumannii chromosome. A novel ISKpn12-bounded transposon was also observed to contain blaTEM and aacC2e which was found interrupting Tn5393 along with an IS26 pseudo-compound transposon to form a 24.9 kb resistance island in an Acinetobacter pittii plasmid. Multiple mobile genetic elements are involved in the formation of transposon structures that circulate blaTEM and aacC2e. Among these, IS26 and ISAba1 appear to have played a major role in the formation and spread of these elements in the Acinetobacter species.
Collapse
Affiliation(s)
- Liam A Tobin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Mehrad Hamidian
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
3
|
Ambrose SJ, Hall RM. Variation in the plasmid backbone and dif module content of R3-T33 Acinetobacter plasmids. Plasmid 2024; 129-130:102722. [PMID: 38631562 DOI: 10.1016/j.plasmid.2024.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
The predominant type of plasmids found in Acinetobacter species encode a Rep_3 initiation protein and many of these carry their accessory genes in dif modules. Here, available sequences of the 14 members of the group of Rep_3 plasmids typed as R3-T33, using a threshold of 95% identity in the repA gene, were compiled and compared. These plasmids were from various Acinetobacter species. The pdif sites were identified allowing the backbone and dif modules to be defined. As for other Rep_3 plasmids carrying dif modules, orfX encoding a protein of unknown function was found downstream of repA followed by a pdif site in the orientation XerC binding site-spacer-XerD binding site. Most backbones (n = 12) also included mobA and mobC genes but the two plasmids with the most diverged repA and orfX genes had different backbone contents. Although the gene content of the plasmid backbone was largely conserved, extensive recombinational exchange was detected and only two small groups carried identical or nearly identical backbones. Individual plasmids were associated with 1 to 13 dif modules. Many different dif modules were identified, including ones containing antibiotic or chromate resistance genes and several toxin/antitoxin gene pairs. In some cases, modules carrying the same genes were significantly diverged. Generally, the orientation of the pdif sites alternated such that C modules (XerC binding sites internal) alternated with D modules (XerD binding sites internal). However, fusions of two dif modules via mutational inactivation or loss of a pdif site were also detected.
Collapse
Affiliation(s)
- Stephanie J Ambrose
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Traglia G, Ramirez MS, Tolmasky ME. Role of Xer site-specific recombination in the genesis of pJHCMW1: an evolutionary hypothesis. J Glob Antimicrob Resist 2023; 34:199-201. [PMID: 37517477 PMCID: PMC10984218 DOI: 10.1016/j.jgar.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023] Open
Affiliation(s)
- German Traglia
- Unidad de Genómica y Bioinformática, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de La República, Uruguay
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California.
| |
Collapse
|