1
|
Xue D, Wu W, Kong D. Strategies utilized by plants to defend against Ralstonia solanacearum. FRONTIERS IN PLANT SCIENCE 2025; 16:1510177. [PMID: 40491817 PMCID: PMC12146382 DOI: 10.3389/fpls.2025.1510177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 05/01/2025] [Indexed: 06/11/2025]
Abstract
Ralstonia solanacearum, the causal agent of bacterial wilt, is recognized as one of the most destructive vascular pathogens. Plant defense responses are gradually developed through long-term interactions with R. solanacearum. The plant cell wall integrity (CWI) system has evolved to initiate defense responses via a diverse array of plasma membrane-resident sensors. These defense responses result primarily from physical and chemical actions that counteract infection with R. solanacearum. The plant cell wall serves as a defensive barrier against the pathogen, including cellulose, hemicellulose, pectin, lignin, and suberin. Various modifications to the cell wall and multiple changes in its composition are employed by plants resistant to R. solanacearum. Physical confinement vertically or horizontally induced in xylem tissues is the most effective method of defense against R. solanacearum. The timely formation of tyloses and gels within the vessel lumen contributes to the suppression of R. solanacearum. In addition, the deposition of callose at the infected sites reinforces the cell wall, thereby preventing the further spread of R. solanacearum. Morphological modifications, such as the thickening of the pit membranes and the increased number of larger xylem vessels, play crucial roles in conferring resistance to R. solanacearum. Secondary metabolites act as phytoalexins used by plants against R. solanacearum. In this review, we discuss the strategies deployed by plants resistant to R. solanacearum. In particular, we outline the physical and chemical restrictions, as well as the tissue constraints, against the vascular pathogen.
Collapse
Affiliation(s)
| | | | - Danyu Kong
- Jiangxi Provincial Key Laboratory of Plant Germplasm Resources Innovation and Genetic
Improvement, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| |
Collapse
|
2
|
Hu X, Cai W, Zhang L, Zhu Z, Okita TW, Tian L. Molecular Dialog of Ralstonia solanacearum and Plant Hosts with Highlights on Type III Effectors. Int J Mol Sci 2025; 26:3686. [PMID: 40332227 PMCID: PMC12027289 DOI: 10.3390/ijms26083686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Ralstonia solanacearum is a highly destructive soil-borne bacterium that causes bacterial wilt disease in more than 310 plant species worldwide. The pathogenicity of the bacteria is closely associated with type III effectors (T3Es), a class of virulence factors that are delivered to host plant cells by the type III secretion system. In spite of the complex evolutionary history and genetic diversity of the R. solanacearum species complex (RSSC), more than 100 different T3Es have been identified from the genomes of various strains. Based on the available functional studies, certain T3Es interact with host plant proteins and suppress host cell immunity, whereas other T3Es are recognized by the host plant to trigger specific resistance mechanisms. This review summarizes the mechanisms by which T3Es interfere with plant immune responses and the activation of the plant defense system upon T3E recognition. This in-depth review of the molecular interactions between R. solanacearum and its host plants offers insights into the complexity of plant-pathogen interactions and provides a scientific rationale and theoretical support for the future breeding of resistant crops.
Collapse
Affiliation(s)
- Xinyu Hu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
3
|
Teng K, Lan W, Lei G, Mao H, Tian M, Chao J, Ma J, Meng D, Yin H, Xiao Y. Effects of Pichia sp. J1 and Plant Growth-Promoting Bacterium on Enhancing Tobacco Growth and Suppressing Bacterial Wilt. Curr Microbiol 2025; 82:187. [PMID: 40072599 DOI: 10.1007/s00284-025-04172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Tobacco bacterial wilt (TBW), caused by Ralstonia solanacearum, significantly impacts tobacco yield and quality, leading to substantial economic losses. This study investigated the effects of the microbial agents JX (Pichia sp. J1 and Klebsiella oxytoca ZS4) on the soil properties, rhizospheric microbial community, tobacco agronomic traits, and TBW incidence through field experiments. Our results revealed that JX effectively suppressed TBW (relative control efficiency reached 85.18%) and promoted plant growth, enhancing agronomic traits by 9.58%-49.12%. The microbial agents JX was also attributed to improving soil properties (e.g., organic matter, total nitrogen, total phosphorus, and total potassium). Results of high-throughput sequencing revealed that JX not only affected the structure and diversity of tobacco rhizospheric bacterial/fungal community but also increased the relative abundances of critical microorganisms (e.g., Mesorhizobium, Pedosphaera, Nocardioides, Massilia, Burkholderia, and Purpureocilliu). Functional predictions showed the relative abundance of the pathways about some key secondary metabolisms (e.g., biosynthesis pathway of nicotinamide, phenylpropanoid, indole alkaloids, penicillin, cephalosporin, and novobiocin) and functional enzymes (e.g., catalase, ferroxidase, and tryptophan synthase) increased, which may also be critical factors in promoting tobacco growth and controlling TBW. These findings underscored the effectiveness of JX in both promoting tobacco growth and inhibiting TBW, supporting its practical application in tobacco cultivation.
Collapse
Affiliation(s)
- Kai Teng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Tobacco Company Xiangxi Autonomous Prefecture Corporation, Jishou, 416000, China
| | - Wendi Lan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guosu Lei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Hui Mao
- Hunan Tobacco Company Xiangxi Autonomous Prefecture Corporation, Jishou, 416000, China
| | - Minghui Tian
- Hunan Tobacco Company Xiangxi Autonomous Prefecture Corporation, Jishou, 416000, China
| | - Jin Chao
- Hunan Tobacco Company Xiangxi Autonomous Prefecture Corporation, Jishou, 416000, China
| | - Jingjing Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Yuelushan Laboratory, Changsha, 410125, China.
| |
Collapse
|
4
|
Wu R, Wu Z, Qing Y, Duan C, Guo Y, Zhang X, Huang R, He S, Qiu A. CaZingipain2 Acts Positively in Pepper ( Capsicum annuum L.) Immunity against R. solanacearum. PLANTS (BASEL, SWITZERLAND) 2024; 13:2552. [PMID: 39339527 PMCID: PMC11434725 DOI: 10.3390/plants13182552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is one of the most important diseases in solanaceous plants, including peppers. It generally tends to be more serious under warm-temperature and moist (WM) conditions than at moist room-temperature (RM) conditions. Although immunity mechanisms at room temperature have been intensively studied, the mechanisms underlying WM conditions remain poorly understood. Herein, the pepper cysteine protease CaZingipain2 was expressed and functionally characterized in pepper immunity against R. solanacearum at WM conditions and at room temperature. The results showed that CaZingipain2 localized to the nucleus and was upregulated at the transcript level in pepper plants upon R. solanacearum infection under WM conditions (RSWM). Virus-induced gene silencing of CaZingipain2 significantly increased the susceptibility of pepper plants to RSWM, and was coupled with the downregulation of CaPRP1 and CaMgst3, which are specifically related to pepper immunity against RSWM, according to our previous studies, while its overexpression significantly reduced the susceptibility of N. benethamiana plants to RSWM compared to that of wild-type plants. In addition, our data showed that CaZingipain2 also acts positively in pepper immunity against R. solanacearum infection at room temperature by upregulating the SA- and JA-responsive PR genes, including CaNPR1 and CaDEF1. All these results indicate that CaZingipain2 improves pepper immunity against R. solanacearum under WM conditions and at room temperature by regulating different PR genes.
Collapse
Affiliation(s)
- Ruijie Wu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen Wu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yalin Qing
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chenfeng Duan
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiling Guo
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xujing Zhang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ronghua Huang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuilin He
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ailian Qiu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Chen J, Xu X, Liu W, Feng Z, Chen Q, Zhou Y, Sun M, Gan L, Zhou T, Xuan Y. Plasmodesmata Function and Callose Deposition in Plant Disease Defense. PLANTS (BASEL, SWITZERLAND) 2024; 13:2242. [PMID: 39204678 PMCID: PMC11359699 DOI: 10.3390/plants13162242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Callose, found in the cell walls of higher plants such as β-1,3-glucan with β-1,6 branches, is pivotal for both plant development and responses to biotic and abiotic stressors. Plasmodesmata (PD), membranous channels linking the cytoplasm, plasma membrane, and endoplasmic reticulum of adjacent cells, facilitate molecular transport, crucial for developmental and physiological processes. The regulation of both the structural and transport functions of PD is intricate. The accumulation of callose in the PD neck is particularly significant for the regulation of PD permeability. This callose deposition, occurring at a specific site of pathogenic incursion, decelerates the invasion and proliferation of pathogens by reducing the PD pore size. Scholarly investigations over the past two decades have illuminated pathogen-induced callose deposition and the ensuing PD regulation. This gradual understanding reveals the complex regulatory interactions governing defense-related callose accumulation and protein-mediated PD regulation, underscoring its role in plant defense. This review systematically outlines callose accumulation mechanisms and enzymatic regulation in plant defense and discusses PD's varied participation against viral, fungal, and bacterial infestations. It scrutinizes callose-induced structural changes in PD, highlighting their implications for plant immunity. This review emphasizes dynamic callose calibration in PD constrictions and elucidates the implications and potential challenges of this intricate defense mechanism, integral to the plant's immune system.
Collapse
Affiliation(s)
- Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Xiaofeng Xu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China;
| | - Wei Liu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Ziyang Feng
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Quan Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - You Zhou
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Miao Sun
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Liping Gan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Tiange Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanhu Xuan
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China;
| |
Collapse
|
6
|
Cai W, Tao Y, Cheng X, Wan M, Gan J, Yang S, Okita TW, He S, Tian L. CaIAA2-CaARF9 module mediates the trade-off between pepper growth and immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2054-2074. [PMID: 38450864 PMCID: PMC11182598 DOI: 10.1111/pbi.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
To challenge the invasion of various pathogens, plants re-direct their resources from plant growth to an innate immune defence system. However, the underlying mechanism that coordinates the induction of the host immune response and the suppression of plant growth remains unclear. Here we demonstrate that an auxin response factor, CaARF9, has dual roles in enhancing the immune resistance to Ralstonia solanacearum infection and in retarding plant growth by repressing the expression of its target genes as exemplified by Casmc4, CaLBD37, CaAPK1b and CaRROP1. The expression of these target genes not only stimulates plant growth but also negatively impacts pepper resistance to R. solanacearum. Under normal conditions, the expression of Casmc4, CaLBD37, CaAPK1b and CaRROP1 is active when promoter-bound CaARF9 is complexed with CaIAA2. Under R. solanacearum infection, however, degradation of CaIAA2 is triggered by SA and JA-mediated signalling defence by the ubiquitin-proteasome system, which enables CaARF9 in the absence of CaIAA2 to repress the expression of Casmc4, CaLBD37, CaAPK1b and CaRROP1 and, in turn, impeding plant growth while facilitating plant defence to R. solanacearum infection. Our findings uncover an exquisite mechanism underlying the trade-off between plant growth and immunity mediated by the transcriptional repressor CaARF9 and its deactivation when complexed with CaIAA2.
Collapse
Affiliation(s)
- Weiwei Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Yilin Tao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Xingge Cheng
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Meiyun Wan
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Jianghuang Gan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Sheng Yang
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Thomas W. Okita
- Institute of Biological ChemistryWashington State UniversityPullmanWashingtonUSA
| | - Shuilin He
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| |
Collapse
|
7
|
Xia Q, Ran M, Zhou L, Liu Z, Cai L. g-C 3N 4@CuO electrostatic self-assembly toward Ralstonia solanacearum: Insights from cytomembrane and motility disruption. PEST MANAGEMENT SCIENCE 2024; 80:3107-3115. [PMID: 38407487 DOI: 10.1002/ps.8047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/03/2024] [Accepted: 02/03/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Ralstonia solanacearum, a notorious and refractory bacterial plant pathogen, threatens multiple vegetable crops and causes significant economic loss in agriculture. Long-term use of traditional medicines not only increases the problem of drug resistance, but also causes great environmental pollution. Therefore, there is an urgent need to develop new agents with high efficacy and low toxicity. RESULTS In this study, we have synthesized and characterized graphitic carbon nitride incorporated copper oxide composite (g-C3N4@CuO), which showed higher antimicrobial effect than graphitic carbon nitride nanosheets (g-C3N4 nanosheets) and copper oxide nanoparticles (CuONPs). Ralstonia solanacearum exposed to g-C3N4@CuO exhibited higher levels of oxygen toxicity, cell membrane damage, DNA damage, motility disruption and even cell death compared to g-C3N4 nanosheets and CuONPs. In addition, g-C3N4@CuO was more effective in the control of tobacco bacterial wilt than g-C3N4 nanosheets and CuONPs. CONCLUSION Thus, this study provides a new perspective on g-C3N4@CuO control of bacterial diseases in crops, and the mechanism is related to the destruction of cell membrane damage and motility disruption. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiulan Xia
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- College of Tobacco Science, Guizhou Key Laboratory for Tobacco Quality of Guizhou University, Guiyang, China
| | - Maoyang Ran
- College of Tobacco Science, Guizhou Key Laboratory for Tobacco Quality of Guizhou University, Guiyang, China
| | - Lihe Zhou
- College of Tobacco Science, Guizhou Key Laboratory for Tobacco Quality of Guizhou University, Guiyang, China
| | - Zhongwei Liu
- Institute of Agro-bioengineering, Guizhou University/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
| | - Lin Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- College of Tobacco Science, Guizhou Key Laboratory for Tobacco Quality of Guizhou University, Guiyang, China
- Institute of Agro-bioengineering, Guizhou University/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
| |
Collapse
|
8
|
Shi H, Jiang J, Yu W, Cheng Y, Wu S, Zong H, Wang X, Ding A, Wang W, Sun Y. Naringenin restricts the colonization and growth of Ralstonia solanacearum in tobacco mutant KCB-1. PLANT PHYSIOLOGY 2024; 195:1818-1834. [PMID: 38573326 PMCID: PMC11213252 DOI: 10.1093/plphys/kiae185] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
Bacterial wilt severely jeopardizes plant growth and causes enormous economic loss in the production of many crops, including tobacco (Nicotiana tabacum). Here, we first demonstrated that the roots of bacterial wilt-resistant tobacco mutant KCB-1 can limit the growth and reproduction of Ralstonia solanacearum. Secondly, we demonstrated that KCB-1 specifically induced an upregulation of naringenin content in root metabolites and root secretions. Further experiments showed that naringenin can disrupt the structure of R. solanacearum, inhibit the growth and reproduction of R. solanacearum, and exert a controlling effect on bacterial wilt. Exogenous naringenin application activated the resistance response in tobacco by inducing the burst of reactive oxygen species and salicylic acid deposition, leading to transcriptional reprogramming in tobacco roots. Additionally, both external application of naringenin in CB-1 and overexpression of the Nicotiana tabacum chalcone isomerase (NtCHI) gene, which regulates naringenin biosynthesis, in CB-1 resulted in a higher complexity of their inter-root bacterial communities than in untreated CB-1. Further analysis showed that naringenin could be used as a marker for resistant tobacco. The present study provides a reference for analyzing the resistance mechanism of bacterial wilt-resistant tobacco and controlling tobacco bacterial wilt.
Collapse
Affiliation(s)
- Haoqi Shi
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiale Jiang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Yu
- Fujian Institute of Tobacco Agricultural Sciences, Fuzhou 350003, China
| | - Yazhi Cheng
- Fujian Institute of Tobacco Agricultural Sciences, Fuzhou 350003, China
| | - Shengxin Wu
- Fujian Institute of Tobacco Agricultural Sciences, Fuzhou 350003, China
| | - Hao Zong
- Shandong Linyi Tobacco Co., Ltd., Linyi 276000, China
| | - Xiaoqiang Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Anming Ding
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Weifeng Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yuhe Sun
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
9
|
Hida A, Okano N, Tadokoro C, Fukunishi M, Ahmed AA, Takenaka K, Tateuchi Y, Fujioka K, Torii H, Tajima T, Kato J. Fermented botanical fertilizer controls bacterial wilt of tomatoes caused by Ralstonia pseudosolanacearum. Biosci Biotechnol Biochem 2024; 88:571-576. [PMID: 38383669 DOI: 10.1093/bbb/zbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
This study demonstrates the effect of fermented botanical product (FBP) on Ralstonia pseudosolanacearum-induced bacterial wilt disease and unravels its action mechanism. Soaking with diluted FBP solutions (0.1%-0.5%) significantly suppressed bacterial wilt in tomato plants, and FBP-treated tomato plants grew well against R. pseudosolanacearum infection. Growth assays showed that FBP had no antibacterial effect but promoted R. pseudosolanacearum growth. In contrast, few or no R. pseudosolanacearum cells were detected in aerial parts of tomato plants grown in FBP-soaked soil. Subsequent infection assays using the chemotaxis-deficient mutant (ΔcheA) or the root-dip inoculation method revealed that FBP does not affect pathogen migration to plant roots during infection. Moreover, FBP-pretreated tomato plants exhibited reduced bacterial wilt in the absence of FBP. These findings suggest that the plant, but not the pathogen, could be affected by FBP, resulting in an induced resistance against R. pseudosolanacearum, leading to a suppressive effect on bacterial wilt.
Collapse
Affiliation(s)
- Akiko Hida
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Nanako Okano
- Program of Biotechnology, School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Chika Tadokoro
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Myuji Fukunishi
- Program of Biotechnology, School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Asmaa Ali Ahmed
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Agricultural Microbiology, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Kohei Takenaka
- Department of Research and Development, Manda Fermentation Co., Ltd., Onomichi, Hiroshima, Japan
| | - Yusuke Tateuchi
- Department of Research and Development, Manda Fermentation Co., Ltd., Onomichi, Hiroshima, Japan
| | - Kotaro Fujioka
- Department of Research and Development, Manda Fermentation Co., Ltd., Onomichi, Hiroshima, Japan
| | - Hideto Torii
- Department of Research and Development, Manda Fermentation Co., Ltd., Onomichi, Hiroshima, Japan
| | - Takahisa Tajima
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Junichi Kato
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
10
|
Yadav M, Sathe J, Teronpi V, Kumar A. Navigating the signaling landscape of Ralstonia solanacearum: a study of bacterial two-component systems. World J Microbiol Biotechnol 2024; 40:153. [PMID: 38564115 DOI: 10.1007/s11274-024-03950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Ralstonia solanacearum, the bacterium that causes bacterial wilt, is a destructive phytopathogen that can infect over 450 different plant species. Several agriculturally significant crop plants, including eggplant, tomato, pepper, potato, and ginger, are highly susceptible to this plant disease, which has a global impact on crop quality and yield. There is currently no known preventive method that works well for bacterial wilt. Bacteria use two-component systems (TCSs) to sense their environment constantly and react appropriately. This is achieved by an extracellular sensor kinase (SK) capable of sensing a suitable signal and a cytoplasmic response regulator (RR) which gives a downstream response. Moreover, our investigation revealed that R. solanacearum GMI1000 possesses a substantial count of TCSs, specifically comprising 36 RRs and 27 SKs. While TCSs are known targets for various human pathogenic bacteria, such as Salmonella, the role of TCSs in R. solanacearum remains largely unexplored in this context. Notably, numerous inhibitors targeting TCSs have been identified, including GHL (Gyrase, Hsp, and MutL) compounds, Walk inhibitors, and anti-TCS medications like Radicicol. Consequently, the investigation into the involvement of TCSs in virulence and pathogenesis has gained traction; however, further research is imperative to ascertain whether TCSs could potentially supplant conventional anti-wilt therapies. This review delves into the prospective utilization of TCSs as an alternative anti-wilt therapy, focusing on the lethal phytopathogen R. solanacearum.
Collapse
Affiliation(s)
- Mohit Yadav
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Janhavi Sathe
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, Karnataka, 560065, India
| | - Valentina Teronpi
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Behali, Biswanath, Assam, 784184, India
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
| |
Collapse
|
11
|
Bhatt S, Faridi N, Raj SMP, Agarwal A, Punetha M. Recent advances in immuno-based methods for the detection of Ralstonia solanacearum. J Microbiol Methods 2024; 217-218:106889. [PMID: 38211840 DOI: 10.1016/j.mimet.2024.106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Ralstonia solanacearum (RS) is a widely recognized phytopathogenic bacterium which is responsible for causing devastating losses in a wide range of economically significant crops. Timely and accurate detection of this pathogen is pivotal to implementing effective disease management strategies and preventing crop losses. This review provides a comprehensive overview of recent advances in immuno-based detection methods for RS. The review begins by introducing RS, highlighting its destructive potential and the need for point-of-care detection techniques. Subsequently, it explores traditional detection methods and their limitations, emphasizing the need for innovative approaches. The main focus of this review is on immuno-based detection methods and it discusses recent advancements in serological detection techniques. Furthermore, the review sheds light on the challenges and prospects of immuno-based detection of RS. It emphasizes the importance of developing rapid, field-deployable assays that can be used by farmers and researchers alike. In conclusion, this review provides valuable insights into the recent advances in immuno-based detection methods for RS.
Collapse
Affiliation(s)
- Shalini Bhatt
- P P Savani University, Surat 394125, Gujarat, India; Defence Institute of Bio-Energy Research (DIBER), DRDO, Nainital, Haldwani 263139, Uttarakhand, India.
| | - Neha Faridi
- Defence Institute of Bio-Energy Research (DIBER), DRDO, Nainital, Haldwani 263139, Uttarakhand, India
| | - S Merwyn P Raj
- Defence Institute of Bio-Energy Research (DIBER), DRDO, Nainital, Haldwani 263139, Uttarakhand, India
| | - Ankur Agarwal
- Defence Institute of Bio-Energy Research (DIBER), DRDO, Nainital, Haldwani 263139, Uttarakhand, India
| | | |
Collapse
|
12
|
Li K, Zhong W, Li P, Ren J, Jiang K, Wu W. Antibacterial mechanism of lignin and lignin-based antimicrobial materials in different fields. Int J Biol Macromol 2023; 252:126281. [PMID: 37572815 DOI: 10.1016/j.ijbiomac.2023.126281] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The control of microbial infection transmission often relies on the utilization of synthetic and metal-based antimicrobial agents. However, their non-biodegradability and inadequate disposal practices lead to significant environmental contamination. To address this concern, the quest for natural alternatives has gained paramount importance. Lignin, a widely available renewable aromatic compound, emerges as a promising candidate owing to its inherent phenolic moiety, which lends itself well to acting as a natural antimicrobial agent either independently or in combination with other agents. This article provides a comprehensive account of the structure and primary classes of lignin. Additionally, it elucidates the antimicrobial mechanism of lignin, the factors influencing its efficacy, and the methods employed for its detection. Moreover, it describes the progress made in developing the antimicrobial capacity of lignin in different areas. In conclusion, this paper not only outlines the current state of research on the antimicrobial function of lignin, but also identifies challenges and future possibilities for enhancing its antimicrobial properties. This work holds great significance in the ongoing endeavor to contribute to high-impact research on natural alternatives for controlling infections and fostering environmentally conscious practices.
Collapse
Affiliation(s)
- Kongyan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianpeng Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kangjie Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
13
|
Yadav M, Sarkar S, Olymon K, Ray SK, Kumar A. Combined In Silico and In Vitro Study to Reveal the Structural Insights and Nucleotide-Binding Ability of the Transcriptional Regulator PehR from the Phytopathogen Ralstonia solanacearum. ACS OMEGA 2023; 8:34499-34515. [PMID: 37779998 PMCID: PMC10535256 DOI: 10.1021/acsomega.3c03175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
The transcriptional regulator PehR regulates the synthesis of the extracellular plant cell wall-degrading enzyme polygalacturonase, which is essential in the bacterial wilt of plants caused by one of the most devastating plant phytopathogens, Ralstonia solanacearum. The bacterium has a wide global distribution infecting many different plant species, resulting in massive agricultural and economic losses. Because the PehR molecular structure has not yet been determined and the structural consequences of PehR on ligand binding have not been thoroughly investigated, we have used an in silico approach combined with in vitro experiments for the first time to characterize the PehR regulator from a local isolate (Tezpur, Assam, India) of the phytopathogenic bacterium R. solanacearum F1C1. In this study, an in silico approach was employed to model the 3D structure of the PehR regulator, followed by the binding analysis of different ligands against this regulatory protein. Molecular docking studies suggest that ATP has the highest binding affinity for the PehR regulator. By using molecular dynamics (MD) simulation analysis, involving root-mean-square deviation, root-mean-square fluctuations, hydrogen bonding, radius of gyration, solvent-accessible surface area, and principal component analysis, it was possible to confirm the sudden conformational changes of the PehR regulator caused by the presence of ATP. We used an in vitro approach to further validate the formation of the PehR-ATP complex. In this approach, recombinant DNA technology was used to clone, express, and purify the gene encoding the PehR regulator from R. solanacearum F1C1. Purified PehR was used in ATP-binding experiments using fluorescence spectroscopy and Fourier transform infrared spectroscopy, the outcomes of which showed a potent binding to ATP. The putative PehR-ATP-binding analysis revealed the importance of the amino acids Lys190, Glu191, Arg192, Arg375, and Asp378 for the ATP-binding process, but further study is required to confirm this. It will be simpler to comprehend the catalytic mechanisms of a crucial PehR regulator process in R. solanacearum with the aid of the ATP-binding process hints provided by these structural biology applications.
Collapse
Affiliation(s)
- Mohit Yadav
- Department
of Molecular Biology and Biotechnology, Tezpur University, Napaam 784028, Assam, India
| | - Sharmilee Sarkar
- Department
of Molecular Biology and Biotechnology, Tezpur University, Napaam 784028, Assam, India
| | - Kaushika Olymon
- Department
of Molecular Biology and Biotechnology, Tezpur University, Napaam 784028, Assam, India
| | - Suvendra Kumar Ray
- Department
of Molecular Biology and Biotechnology, Tezpur University, Napaam 784028, Assam, India
| | - Aditya Kumar
- Department
of Molecular Biology and Biotechnology, Tezpur University, Napaam 784028, Assam, India
| |
Collapse
|
14
|
Zeiss DR, Molinaro A, Steenkamp PA, Silipo A, Piater LA, Di Lorenzo F, Dubery IA. Lipopolysaccharides from Ralstonia solanacearum induce a broad metabolomic response in Solanum lycopersicum. Front Mol Biosci 2023; 10:1232233. [PMID: 37635940 PMCID: PMC10450222 DOI: 10.3389/fmolb.2023.1232233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023] Open
Abstract
Ralstonia solanacearum, one of the most destructive crop pathogens worldwide, causes bacterial wilt disease in a wide range of host plants. The major component of the outer membrane of Gram-negative bacteria, lipopolysaccharides (LPS), has been shown to function as elicitors of plant defense leading to the activation of signaling and defense pathways in several plant species. LPS from a R. solanacearum strain virulent on tomato (LPSR. sol.), were purified, chemically characterized, and structurally elucidated. The lipid A moiety consisted of tetra- to hexa-acylated bis-phosphorylated disaccharide backbone, also decorated by aminoarabinose residues in minor species, while the O-polysaccharide chain consisted of either linear tetrasaccharide or branched pentasaccharide repeating units containing α-L-rhamnose, N-acetyl-β-D-glucosamine, and β-L-xylose. These properties might be associated with the evasion of host surveillance, aiding the establishment of the infection. Using untargeted metabolomics, the effect of LPSR. sol. elicitation on the metabolome of Solanum lycopersicum leaves was investigated across three incubation time intervals with the application of UHPLC-MS for metabolic profiling. The results revealed the production of oxylipins, e.g., trihydroxy octadecenoic acid and trihydroxy octadecadienoic acid, as well as several hydroxycinnamic acid amide derivatives, e.g., coumaroyl tyramine and feruloyl tyramine, as phytochemicals that exhibit a positive correlation to LPSR. sol. treatment. Although the chemical properties of these metabolite classes have been studied, the functional roles of these compounds have not been fully elucidated. Overall, the results suggest that the features of the LPSR. sol. chemotype aid in limiting or attenuating the full deployment of small molecular host defenses and contribute to the understanding of the perturbation and reprogramming of host metabolism during biotic immune responses.
Collapse
Affiliation(s)
- Dylan R. Zeiss
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Naples, Italy
- Task Force on Microbiome Studies, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Naples, Italy
| | - Paul A. Steenkamp
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Alba Silipo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Naples, Italy
- Task Force on Microbiome Studies, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Naples, Italy
| | - Lizelle A. Piater
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Naples, Italy
- Task Force on Microbiome Studies, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Naples, Italy
| | - Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
15
|
Sun N, Hu J, Li C, Wang X, Gai Y, Jiang X. Fusion gene 4CL-CCR promotes lignification in tobacco suspension cells. PLANT CELL REPORTS 2023; 42:939-952. [PMID: 36964306 DOI: 10.1007/s00299-023-03002-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/03/2023] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE The fusion gene 4CL-CCR promotes lignification and activates lignin-related MYB expression in tobacco but inhibits auxin-related gene expression and hinders the auxin absorption of cells. Given the importance of lignin polymers in plant growth and their industrial value, it is necessary to investigate how plants synthesize monolignols and regulate the level of lignin in cell walls. In our previous study, expression of the Populus tomentosa fusion gene 4CL-CCR significantly promoted the production of 4-hydroxycinnamyl alcohols. However, the function of 4CL-CCR in organisms remains poorly understood. In this study, the fusion gene 4CL-CCR was heterologously expressed in tobacco suspension cells. We found that the transgenic suspension cells exhibited lignification earlier. Furthermore, 4CL-CCR significantly reduced the content of phenolic acids and increased the content of aldehydes in the medium, which led to an increase in lignin deposition. Moreover, transcriptome results showed that the genes related to lignin synthesis, such as PAL, 4CL, CCoAOMT and CAD, were significantly upregulated in the 4CL-CCR group. The expression of genes related to auxin, such as ARF3, ARF5 and ARF6, was significantly downregulated. The downregulation of auxin affected the expression of transcription factor MYBs. We hypothesize that the upregulated genes MYB306 and MYB315 are involved in the regulation of cell morphogenesis and lignin biosynthesis and eventually enhance lignification in tobacco suspension cells. Our findings provide insight into the function of 4CL-CCR in lignification and how secondary cell walls are formed in plants.
Collapse
Affiliation(s)
- Nan Sun
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology , Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing, 100083, China
| | - Jiaqi Hu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology , Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing, 100083, China
| | - Can Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology , Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing, 100083, China
| | - Xuechun Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology , Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing, 100083, China
| | - Ying Gai
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology , Beijing Forestry University, Beijing, 100083, China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing, 100083, China.
| | - Xiangning Jiang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology , Beijing Forestry University, Beijing, 100083, China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing, 100083, China.
| |
Collapse
|