1
|
Deepak Reddy B, Kumar B, Sahni S, Yashaswini G, Karthik S, Reddy MSS, Kumar R, Mukherjee U. Genetic diversity and population structure of Fusarium udum in India and its correlation with pigeonpea wilt incidence. J Basic Microbiol 2024; 64:e2300682. [PMID: 38616701 DOI: 10.1002/jobm.202300682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/29/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
In a study conducted in India, 50 Fusarium isolates were collected from pigeonpea growing regions and extensively examined for their cultural and morphological characteristics. These isolates exhibited significant variations in traits including growth rate, mycelial growth patterns, color, zonation, pigmentation, spore size, and septation. Subsequently, 30 isolates were chosen for pathogenicity testing on eight pigeonpea genotypes. Results showed distinct reactions, with four genotypes displaying differential responses (ICP8858, ICP8859, ICP8862, and BDN-2), while ICP9174 and ICP8863 consistently exhibited resistance and ICP2376 and BAHAR remained susceptible to wilt disease. To study the interaction between Fusarium isolates and pigeonpea host differentials (HDs), an additive main effects and multiplicative interaction analysis was conducted. The majority of disease incidence variation (75.54%) was attributed to HD effects, while Fusarium isolate effects accounted for only 1.99%. The interaction between Isolates and HDs (I × HD) contributed 21.95% to the total variation, being smaller than HD but larger than I. Based on HD reactions, isolates were classified into nine variants, showing varying distributions across pigeonpea growing states, with variants 2 and 3 being prevalent in several regions. This diversity underscores the need for location-specific wilt-resistant pigeonpea cultivars. Furthermore, genetic analysis of 23 representative isolates, through internal transcribed spacer region of ribosomal DNA and translation elongation factor 1-α gene sequencing, revealed three major clusters: Fusarium udum, Fusarium solani, and Fusarium equiseti. These findings hold potential for developing location-specific wilt-resistant pigeonpea cultivars and enhancing disease management strategies.
Collapse
Affiliation(s)
- Beerelli Deepak Reddy
- Department of Plant Pathology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Birendra Kumar
- Department of Plant Pathology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Sangita Sahni
- Department of Plant Pathology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Gummudala Yashaswini
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Somala Karthik
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | | | - Rajeev Kumar
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Udayan Mukherjee
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| |
Collapse
|
2
|
Reddy BD, Kumar B, Sahni S, Yashaswini G, Karthik S, Reddy MSS, Kumar R, Mukherjee U, Krishna KS. Harnessing the power of native biocontrol agents against wilt disease of Pigeonpea incited by Fusarium udum. Sci Rep 2024; 14:12500. [PMID: 38822009 PMCID: PMC11143286 DOI: 10.1038/s41598-024-60039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/18/2024] [Indexed: 06/02/2024] Open
Abstract
Fusarium wilt, caused by (Fusarium udum Butler), is a significant threat to pigeonpea crops worldwide, leading to substantial yield losses. Traditional approaches like fungicides and resistant cultivars are not practical due to the persistent and evolving nature of the pathogen. Therefore, native biocontrol agents are considered to be more sustainable solution, as they adapt well to local soil and climatic conditions. In this study, five isolates of F. udum infecting pigeonpea were isolated from various cultivars and characterized morphologically and molecularly. The isolate from the ICP 8858 cultivar displayed the highest virulence of 90%. Besides, 100 endophytic bacteria, 100 rhizosphere bacteria and three Trichoderma spp. were isolated and tested against F. udum isolated from ICP 8858 under in vitro conditions. Out of the 200 bacteria tested, nine showed highest inhibition, including Rb-4 (Bacillus sp.), Rb-11 (B. subtilis), Rb-14 (B. megaterium), Rb-18 (B. subtilis), Rb-19 (B. velezensis), Eb-8 (Bacillus sp.), Eb-11 (B. subtilis), Eb-13 (P. aeruginosa), and Eb-21 (P. aeruginosa). Similarly, Trichoderma spp. were identified as T. harzianum, T. asperellum and Trichoderma sp. Notably, Rb-18 (B. subtilis) and Eb-21 (P. aeruginosa) exhibited promising characteristics such as the production of hydrogen cyanide (HCN), cellulase, siderophores, ammonia and nutrient solubilization. Furthermore, treating pigeonpea seedlings with these beneficial microorganisms led to increased levels of key enzymes (POD, PPO, and PAL) associated with resistance to Fusarium wilt, compared to untreated controls. In field trials conducted for four seasons, the application of these potential biocontrol agents as seed treatments on the susceptible ICP2376 cultivar led to the lowest disease incidence. Specifically, treatments T2 (33.33) (P. aeruginosa) and T3 (35.41) (T. harzianium) exhibited the lowest disease incidence, followed by T6 (36.5) (Carbendizim), T1 (36.66) (B. subtilis), T4 (52.91) (T. asperellum) and T5 (53.33) (Trichoderma sp.). Results of this study revealed that, P. aeruginosa (Eb-21), B. subtilis (Rb-18) and T. harzianum can be used for plant growth promotion and management of Fusarium wilt of pigeonpea.
Collapse
Affiliation(s)
- B Deepak Reddy
- Department of Plant Pathology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India.
| | - Birendra Kumar
- Department of Plant Pathology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Sangita Sahni
- Department of Plant Pathology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - G Yashaswini
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Somala Karthik
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - M S Sai Reddy
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Rajeev Kumar
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad, Central Agricultural University, Pusa, Bihar, India
| | - U Mukherjee
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - K Sai Krishna
- Department of Basic Sciences and Languages, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| |
Collapse
|