1
|
de Souza PA, Dos Santos MCS, da Silva Lage de Miranda RV, da Costa LV, da Silva RPP, Silva C, Midlej V, de Miranda CAC, da Conceição GMS, Forsythe SJ, Bôas MHSV, Brandão MLL. Evaluation of biofilm formation, antimicrobial pattern, and typing of Stenotrophomonas maltophilia isolated from clinical sources in Brazil. Braz J Microbiol 2025:10.1007/s42770-025-01669-y. [PMID: 40341473 DOI: 10.1007/s42770-025-01669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 04/01/2025] [Indexed: 05/10/2025] Open
Abstract
This study aimed to evaluate the biofilm formation and disinfectant tolerance of Stenotrophomonas maltophilia strains originated from hospitalized patients during the COVID-19 pandemic. Nine strains were isolated from different clinical departments at a hospital in Brazil, were identified by VITEK®2, Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry, 16S rRNA sequencing, and 23S rRNA PCR. Enterobacterial Repetitive Intergenic Consensus-Polymerase Chain Reaction (ERIC-PCR), Fourier-transform infrared (FTIR) spectroscopy, antimicrobial susceptibility testing, and biofilm formation and disinfectant tolerance tests were applied. ERIC-PCR, FTIR, and VITEK®2 results exhibited no correlation between the strains, indicating different origins in the Hospital. Most strains expressed resistance to several antibiotics but minocycline and cefiderocol, which were therefore regarded as optimistic therapy options. All strains produced biofilms on polystyrene and most of them (n = 7) on stainless-steel surfaces. The sodium hypochlorite 0.5% was shown to be the most efficient disinfectant for biofilm eradication. Biofilm formation and tolerance to disinfectants analysis indicated the requirement for efficient cleaning protocols to eliminate S. maltophilia contamination.
Collapse
Affiliation(s)
- Paula Araujo de Souza
- Institute of Technology in Immunobiologicals, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
- National Institute of Quality Control in Health, Oswaldo Cruz Foundation, Av. Brasil, 4365. Manguinhos, Rio de Janeiro, RJ, CEP 21040 - 900, Brazil.
| | | | | | - Luciana Veloso da Costa
- Institute of Technology in Immunobiologicals, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Claudiane Silva
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Victor Midlej
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | - Maria Helena Simões Villas Bôas
- National Institute of Quality Control in Health, Oswaldo Cruz Foundation, Av. Brasil, 4365. Manguinhos, Rio de Janeiro, RJ, CEP 21040 - 900, Brazil
| | | |
Collapse
|
2
|
Le Galudec J, Dupoy M, Duraffourg L, Rebuffel V, Marcoux PR. Microbial Identification Through Multispectral Infrared Imaging of Colonies: A New Type of Morpho-Spectral Fingerprinting. Microb Biotechnol 2025; 18:e70093. [PMID: 39898895 PMCID: PMC11789478 DOI: 10.1111/1751-7915.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
We describe a proof of concept for a new microbial identification technique using Direct Frequency Infrared (DFIR) multispectral imaging. This approach combines Quantum Cascade Laser (QCL) light sources with a microbolometer array in a lensless configuration to capture detailed multispectral images of microbial colonies. These optical fingerprints blend both morphological and spectral information, without the need for staining or colony picking. A proof-of-concept database was acquired, comprising 10 strains from 8 species across 4 distinct genera. In total, 2253 microbial colonies were imaged at 9 different mid-infrared wavelengths. Machine learning classification correctly identified up to 94.4% ± 1.6 of colonies fingerprints, efficiently discriminating even closely related strains. Reducing the number of wavelengths to 4 maintained high classification performance, demonstrating the method's robustness. The resulting system is faster and simpler than existing FTIR imaging systems, making it a promising tool for microbial identification.
Collapse
Affiliation(s)
- Joel Le Galudec
- ADMIRMoiransFrance
- Univ. Grenoble Alpes CEALETIGrenobleFrance
| | - Mathieu Dupoy
- ADMIRMoiransFrance
- Univ. Grenoble Alpes CEALETIGrenobleFrance
| | | | | | | |
Collapse
|
3
|
Habibi N, Uddin S, Behbehani M, Mustafa AS, Al-Fouzan W, Al-Sarawi HA, Safar H, Alatar F, Al Sawan RMZ. Aerosol-Mediated Spread of Antibiotic Resistance Genes: Biomonitoring Indoor and Outdoor Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:983. [PMID: 39200594 PMCID: PMC11353316 DOI: 10.3390/ijerph21080983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a conspicuous global public health threat. The World Health Organization (WHO) has launched the "One-Health" approach, which encourages the assessment of antibiotic resistance genes (ARGs) within an environment to constrain and alleviate the development of AMR. The prolonged use and overuse of antibiotics in treating human and veterinary illnesses, and the inability of wastewater treatment plants to remove them have resulted in elevated concentrations of these metabolites in the surroundings. Microbes residing within these settings acquire resistance under selective pressure and circulate between the air-land interface. Initial evidence on the indoor environments of wastewater treatment plants, hospitals, and livestock-rearing facilities as channels of AMR has been documented. Long- and short-range transport in a downwind direction disseminate aerosols within urban communities. Inhalation of such aerosols poses a considerable occupational and public health risk. The horizontal gene transfer (HGT) is another plausible route of AMR spread. The characterization of ARGs in the atmosphere therefore calls for cutting-edge research. In the present review, we provide a succinct summary of the studies that demonstrated aerosols as a media of AMR transport in the atmosphere, strengthening the need to biomonitor these pernicious pollutants. This review will be a useful resource for environmental researchers, healthcare practitioners, and policymakers to issue related health advisories.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Saif Uddin
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Montaha Behbehani
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 13060, Kuwait
| | - Wadha Al-Fouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 13060, Kuwait
| | | | - Hussain Safar
- OMICS-RU, Health Science Centre, Kuwait University, Jabriya 13060, Kuwait
| | - Fatemah Alatar
- Serology and Molecular Microbiology Reference Laboratory, Mubarak Al-Kabeer Hospital, Ministry of Health, Kuwait City 13110, Kuwait
| | - Rima M. Z. Al Sawan
- Neonatology Department, Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser 92426, Kuwait
| |
Collapse
|
4
|
Park S, Ryoo N. Comparative analysis of IR-Biotyper, MLST, cgMLST, and WGS for clustering of vancomycin-resistant Enterococcus faecium in a neonatal intensive care unit. Microbiol Spectr 2024; 12:e0411923. [PMID: 38441473 PMCID: PMC10986520 DOI: 10.1128/spectrum.04119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024] Open
Abstract
Healthcare-associated infections caused by vancomycin-resistant Enterococcus faecium (VREFM) pose a significant threat to healthcare. Confirming the relatedness of the bacterial isolates from different patients is challenging. We aimed to assess the efficacy of IR-Biotyper, multilocus sequencing typing (MLST), and core-genome MLST (cgMLST) in comparison with whole-genome sequencing (WGS) for outbreak confirmation in the neonatal intensive care unit (NICU). Twenty VREFM isolates from four neonates and ten control isolates from unrelated patients were analyzed. Genomic DNA extraction, MLST, cgMLST, and WGS were performed. An IR-Biotyper was used with colonies obtained after 24 h of incubation on tryptic soy agar supplemented with 5% sheep blood. The optimal clustering cutoff for the IR-Biotyper was determined by comparing the results with WGS. Clustering concordance was assessed using the adjusted Rand and Wallace indices. MLST and cgMLST identified sequence types (ST) and complex types (CT), revealing suspected outbreak isolates with a predominance of ST17 and CT6553, were confirmed by WGS. For the IR-Biotyper, the proposed optimal clustering cut-off range was 0.106-0.111. Despite lower within-run precision, of the IR-Biotyper, the clustering concordance with WGS was favorable, meeting the criteria for real-time screening. This study confirmed a nosocomial outbreak of VREFM in the NICU using an IR-Biotyper, showing promising results compared to MLST. Although within-run precision requires improvement, the IR-Biotyper demonstrated high discriminatory power and clustering concordance with WGS. These findings suggest its potential as a real-time screening tool for the detection of VREFM-related nosocomial outbreaks. IMPORTANCE In this study, we evaluated the performance of the IR-Biotyper in detecting nosocomial outbreaks caused by vancomycin-resistant Enterococcus faecium, comparing it with MLST, cgMLST, and WGS. We proposed a cutoff that showed the highest concordance compared to WGS and assessed the within-run precision of the IR-Biotyper by evaluating the consistency in genetically identical strain when repeated in the same run.
Collapse
Affiliation(s)
- Sunggyun Park
- Departments of Laboratory Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - Namhee Ryoo
- Departments of Laboratory Medicine, Keimyung University School of Medicine, Daegu, South Korea
| |
Collapse
|
5
|
Novais Â, Gonçalves AB, Ribeiro TG, Freitas AR, Méndez G, Mancera L, Read A, Alves V, López-Cerero L, Rodríguez-Baño J, Pascual Á, Peixe L. Development and validation of a quick, automated, and reproducible ATR FT-IR spectroscopy machine-learning model for Klebsiella pneumoniae typing. J Clin Microbiol 2024; 62:e0121123. [PMID: 38284762 PMCID: PMC10865814 DOI: 10.1128/jcm.01211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
The reliability of Fourier-transform infrared (FT-IR) spectroscopy for Klebsiella pneumoniae typing and outbreak control has been previously assessed, but issues remain in standardization and reproducibility. We developed and validated a reproducible FT-IR with attenuated total reflectance (ATR) workflow for the identification of K. pneumoniae lineages. We used 293 isolates representing multidrug-resistant K. pneumoniae lineages causing outbreaks worldwide (2002-2021) to train a random forest classification (RF) model based on capsular (KL)-type discrimination. This model was validated with 280 contemporaneous isolates (2021-2022), using wzi sequencing and whole-genome sequencing as references. Repeatability and reproducibility were tested in different culture media and instruments throughout time. Our RF model allowed the classification of 33 capsular (KL)-types and up to 36 clinically relevant K. pneumoniae lineages based on the discrimination of specific KL- and O-type combinations. We obtained high rates of accuracy (89%), sensitivity (88%), and specificity (92%), including from cultures obtained directly from the clinical sample, allowing to obtain typing information the same day bacteria are identified. The workflow was reproducible in different instruments throughout time (>98% correct predictions). Direct colony application, spectral acquisition, and automated KL prediction through Clover MS Data analysis software allow a short time-to-result (5 min/isolate). We demonstrated that FT-IR ATR spectroscopy provides meaningful, reproducible, and accurate information at a very early stage (as soon as bacterial identification) to support infection control and public health surveillance. The high robustness together with automated and flexible workflows for data analysis provide opportunities to consolidate real-time applications at a global level. IMPORTANCE We created and validated an automated and simple workflow for the identification of clinically relevant Klebsiella pneumoniae lineages by FT-IR spectroscopy and machine-learning, a method that can be extremely useful to provide quick and reliable typing information to support real-time decisions of outbreak management and infection control. This method and workflow is of interest to support clinical microbiology diagnostics and to aid public health surveillance.
Collapse
Affiliation(s)
- Ângela Novais
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana Beatriz Gonçalves
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Teresa G. Ribeiro
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- CCP, Culture Collection of Porto, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana R. Freitas
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Gema Méndez
- CLOVER Bioanalytical Software, Granada, Spain
| | | | - Antónia Read
- Clinical Microbiology Laboratory, Local Healthcare Unit, Matosinhos, Portugal
| | - Valquíria Alves
- Clinical Microbiology Laboratory, Local Healthcare Unit, Matosinhos, Portugal
| | - Lorena López-Cerero
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Vírgen Macarena, Instituto de Biomedicina de Sevilla (IBIS; CSIC/Hospital Virgen Macarena/Universidad de Sevilla), Sevilla, Spain
- Departamentos de Microbiología y Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Jesús Rodríguez-Baño
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Vírgen Macarena, Instituto de Biomedicina de Sevilla (IBIS; CSIC/Hospital Virgen Macarena/Universidad de Sevilla), Sevilla, Spain
- Departamentos de Microbiología y Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Álvaro Pascual
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Vírgen Macarena, Instituto de Biomedicina de Sevilla (IBIS; CSIC/Hospital Virgen Macarena/Universidad de Sevilla), Sevilla, Spain
- Departamentos de Microbiología y Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Luísa Peixe
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- CCP, Culture Collection of Porto, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Zendri F, Schmidt V, Mauder N, Loeffler A, Jepson RE, Isgren C, Pinchbeck G, Haldenby S, Timofte D. Rapid typing of Klebsiella pneumoniae and Pseudomonas aeruginosa by Fourier-transform Infrared spectroscopy informs infection control in veterinary settings. Front Microbiol 2024; 15:1334268. [PMID: 38371930 PMCID: PMC10869444 DOI: 10.3389/fmicb.2024.1334268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/09/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction The emergence of multi-drug resistant (MDR) pathogens linked to healthcare-associated infections (HCAIs) is an increasing concern in modern veterinary practice. Thus, rapid bacterial typing for real-time tracking of MDR hospital dissemination is still much needed to inform best infection control practices in a clinically relevant timeframe. To this end, the IR Biotyper using Fourier-Transform InfraRed (FTIR) spectroscopy has the potential to provide fast cluster analysis of potentially related organisms with substantial cost and turnaround time benefits. Materials and methods A collection of MDR bacterial isolates (n = 199, comprising 92 Klebsiella pneumoniae and 107 Pseudomonas aeruginosa) obtained from companion animal (i.e., dogs, cats and horses) clinical investigations, faecal and environmental screening from four veterinary facilities between 2012 and 2019 was analysed retrospectively by FTIR spectroscopy. Its performance was compared against MLST extracted from whole genomes of a subset of clustering isolates (proportionally to cluster size) for investigation of potential nosocomial transmission between patients and the surrounding hospital environments. Results Concordance between the FTIR and MLST types was overall high for K. pneumoniae (Adjusted Rand Index [ARI] of 0.958) and poor for P. aeruginosa (ARI of 0.313). FTIR K. pneumoniae clusters (n = 7) accurately segregated into their respective veterinary facility with evidence of intra-hospital spread of K. pneumoniae between patients and environmental surfaces. Notably, K. pneumoniae ST147 intensely circulated at one Small Animal Hospital ICU. Conversely, Pseudomonas aeruginosa FTIR clusters (n = 18) commonly contained isolates of diversified hospital source and heterogeneous genetic background (as also genetically related isolates spread across different clusters); nonetheless, dissemination of some clones, such as P. aeruginosa ST2644 in the equine hospital, was apparent. Importantly, FTIR clustering of clinical, colonisation and/or environmental isolates sharing genomically similar backgrounds was seen for both MDR organisms, highlighting likely cross-contamination events that led to clonal dissemination within settings. Conclusion FTIR spectroscopy has high discriminatory power for hospital epidemiological surveillance of veterinary K. pneumoniae and could provide sufficient information to support early detection of clonal dissemination, facilitating implementation of appropriate infection control measures. Further work and careful optimisation need to be carried out to improve its performance for typing of P. aeruginosa veterinary isolates.
Collapse
Affiliation(s)
- Flavia Zendri
- Department of Veterinary Anatomy, Physiology and Pathology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| | - Vanessa Schmidt
- Department of Small Animal Clinical Science, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| | | | - Anette Loeffler
- Western Counties Equine Hospital Ltd., Culmstock, United Kingdom
| | | | - Cajsa Isgren
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| | - Gina Pinchbeck
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Sam Haldenby
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Dorina Timofte
- Department of Veterinary Anatomy, Physiology and Pathology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| |
Collapse
|
7
|
Orosz L, Lengyel G, Makai K, Burián K. Prescription of Rifampicin for Staphylococcus aureus Infections Increased the Incidence of Corynebacterium striatum with Decreased Susceptibility to Rifampicin in a Hungarian Clinical Center. Pathogens 2023; 12:pathogens12030481. [PMID: 36986404 PMCID: PMC10058903 DOI: 10.3390/pathogens12030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Several reports have suggested a role for Corynebacterium striatum as an opportunistic pathogen. The authors have conducted a retrospective study at the Clinical Center of the University of Szeged, Hungary, between 2012 and 2021 that revealed significantly increased rifampicin resistance in this species. This work aimed to investigate the reasons behind this phenomenon. The data were collected corresponding to the period between 1 January 2012 and 31 December 2021 at the Department of Medical Microbiology, University of Szeged. To characterize the resistance trends, the antibiotic resistance index was calculated for each antibiotic in use. Fourteen strains with different resistance patterns were further analyzed with Fourier-transform infrared spectroscopy using the IR Biotyper®. The decline in C. striatum sensitivity to rifampicin seen during the COVID-19 pandemic may have been attributable to the use of Rifadin® to treat concomitant Staphylococcus aureus infections. The fact that the IR Biotyper® typing method revealed that the rifampicin-resistant C. striatum strains were closely related supports this hypothesis. The IR Biotyper® infrared spectroscopy proved to be a modern and fast method to support effective antimicrobial stewardship programs.
Collapse
Affiliation(s)
- László Orosz
- Department of Medical Microbiology, University of Szeged, H-6725 Szeged, Hungary
| | - György Lengyel
- Infection Control Department, Semmelweis University, H-1085 Budapest, Hungary
| | - Klára Makai
- Central Pharmacy of Albert Szent-Györgyi Health Center, University of Szeged, H-6725 Szeged, Hungary
| | - Katalin Burián
- Department of Medical Microbiology, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|