1
|
Mahillon M, Debonneville C, Groux R, Roquis D, Brodard J, Faoro F, Foissac X, Schumpp O, Dittmer J. From insect endosymbiont to phloem colonizer: comparative genomics unveils the lifestyle transition of phytopathogenic Arsenophonus strains. mSystems 2025; 10:e0149624. [PMID: 40202301 PMCID: PMC12090721 DOI: 10.1128/msystems.01496-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Bacteria infecting the plant phloem represent a growing threat worldwide. While these organisms often resist in vitro culture, they multiply both in plant sieve elements and hemipteran vectors. Such cross-kingdom parasitic lifestyle has emerged in diverse taxa via distinct ecological routes. In the genus Arsenophonus, the phloem pathogens "Candidatus Arsenophonus phytopathogenicus" (Ap) and "Ca. Phlomobacter fragariae" (Pf) have evolved from insect endosymbionts, but the genetic mechanisms underlying this transition have not been explored. To fill this gap, we obtained the genomes of both strains from insect host metagenomes. The resulting assemblies are highly similar in size and functional repertoire, rich in viral sequences, and closely resemble the genomes of several facultative endosymbiotic Arsenophonus strains of sap-sucking hemipterans. However, a phylogenomic analysis demonstrated distinct origins, as Ap belongs to the "Triatominarum" clade, whereas Pf represents a distant species. We identified a set of orthologs encoded only by Ap and Pf in the genus, including hydrolytic enzymes likely targeting plant substrates. In particular, both bacteria encode putative plant cell wall-degrading enzymes and cysteine peptidases related to xylellain, a papain-like peptidase from Xylella fastidiosa, for which close homologs are found in diverse Pseudomonadota infecting the plant vasculature. In silico predictions and gene expression analyses further support a role during phloem colonization for several of the shared orthologs. We conclude that the double emergence of phytopathogenicity in Arsenophonus may have been mediated by a few horizontal gene transfer events, involving genes acquired from other Pseudomonadota, including phytopathogens. IMPORTANCE We investigate the genetic mechanisms of a transition in bacterial lifestyle. We focus on two phloem pathogens belonging to the genus Arsenophonus: "Candidatus Arsenophonus phytopathogenicus" and "Ca. Phlomobacter fragariae." Both bacteria cause economically significant pathologies, and they have likely emerged among facultative insect endosymbionts. Our genomic analyses show that both strains are highly similar to other strains of the genus associated with sap-sucking hemipterans, suggesting a recent lifestyle shift. Importantly, although the phytopathogenic Arsenophonus strains belong to distant clades, they share a small set of orthologs unique in the genus pangenome. We provide evidence that several of these genes produce hydrolytic enzymes that are secreted and may target plant substrates. The acquisition and exchange of these genes may thus have played a pivotal role in the lifestyle transition of the phytopathogenic Arsenophonus strains.
Collapse
Affiliation(s)
- Mathieu Mahillon
- Research group Virology, Bacteriology and Phytoplasmology, Agroscope, Nyon, Switzerland
| | | | - Raphaël Groux
- Research group Virology, Bacteriology and Phytoplasmology, Agroscope, Nyon, Switzerland
| | - David Roquis
- Haute école du paysage, d'ingénierie et d'architecture de Genève, Geneva, Switzerland
| | - Justine Brodard
- Research group Virology, Bacteriology and Phytoplasmology, Agroscope, Nyon, Switzerland
| | - Franco Faoro
- Dipartimento di Scienze agrarie e ambientali, Università degli Studi di Milano, Milano, Italy
| | - Xavier Foissac
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Université de Bordeaux, Bordeaux, France
| | - Olivier Schumpp
- Research group Virology, Bacteriology and Phytoplasmology, Agroscope, Nyon, Switzerland
| | - Jessica Dittmer
- Dipartimento di Scienze agrarie e ambientali, Università degli Studi di Milano, Milano, Italy
- UMR 1345, Université d’Angers, Institut Agro, INRAE, IRHS, SFR Quasav, Angers, France
| |
Collapse
|
2
|
Simmons T, Nadal‐Jimenez P, Hurst GDD. The Honeybee Associate Galleria mellonella Can Acquire Arsenophonus apicola Through Oral and Parenteral Infection Routes. Environ Microbiol 2025; 27:e70088. [PMID: 40223198 PMCID: PMC11994876 DOI: 10.1111/1462-2920.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025]
Abstract
Members of the genus Arsenophonus are classically considered to be vertically transmitted endosymbiotic associates of invertebrates. Acquisition of Arsenophonus apicola by Apis mellifera honeybees through social and environmental pathways raises the possibility that this species can infect a broader range of host species. In this study, we tested whether a natural inhabitant of bee hives, the wax moth Galleria mellonella, was a suitable host for A. apicola. We first demonstrated A. apicola colonised G. mellonella larvae following injection at doses as low as 104 CFU. A similar capacity of A. apicola to infect G. mellonella orally was evidenced, impacting waxworm development and mortality. Microscopy indicated that A. apicola crossed from gut to hemocoel in the G. mellonella crop, inducing melanisation. PCR screening of Galleria individuals in an apiary sample confirmed exposure of Galleria in the hive context. We conclude that A. apicola is capable of infecting and damaging hive associates. These findings raise two onward avenues of research: first, to investigate whether A. apicola's presence could protect hives against Galleria infestations, and second, to utilise model insect G. mellonella for immunity research to uncover the interplay between A. apicola and insect host defences whilst elucidating virulence factors utilised by A. apicola during infection.
Collapse
Affiliation(s)
- Trefor Simmons
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| | - Pol Nadal‐Jimenez
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| | - Gregory D. D. Hurst
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
3
|
Gokhman VE, Ryabinin AS, Bykov RA, Ilinsky YY. The lowest chromosome number in the family Pteromalidae (Hymenoptera: Chalcidoidea): the karyotype and other genetic features of Pachycrepoideus vindemmiae (Rondani, 1875). Vavilovskii Zhurnal Genet Selektsii 2025; 29:108-112. [PMID: 40144380 PMCID: PMC11933897 DOI: 10.18699/vjgb-25-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 03/28/2025] Open
Abstract
Various genetic features of the hitman strain of the widespread parasitoid of Drosophilidae (Diptera), Pachycrepoideus vindemmiae (Rondani, 1875) (Pteromalidae, Pachyneurinae) were studied. This strain was established and is maintained at the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk, Russia). An analysis of air-dried chromosome preparations from prepupae of this parasitoid showed that it has n = 4 and 2n = 8 in males and females, respectively, which is the lowest known chromosome number in the family Pteromalidae. All chromosomes in the karyotype of this species are metacentric. The first and second chromosomes are of similar size, the remaining ones are substantially shorter. The same results were obtained for an additional strain of this species kept at the Moscow State University (Moscow, Russia). A comparison of the DNA sequence of the barcoding region of the mitochondrial cytochrome c oxidase (COI) gene of the hitman strain of P. vindemmiae with those available from the GenBank and BoLD databases demonstrated that this strain clustered together with conspecifics originating from China, Turkey and Italy. Despite certain endosymbionts being previously reported for the genus Pachycrepoideus Ashmead, 1904 as well as for P. vindemmiae itself, the hitman strain turned out to be free of endosymbiotic bacteria in the genera Arsenophonus Gherna et al., 1991, Cardinium Zchori-Fein et al., 2004, Rickettsia da Rocha-Lima, 1916, Spiroplasma Saglio et al., 1973 and Wolbachia Hertig, 1936. The above-mentioned results improve our knowledge of various genetic features of parasitoids of the family Pteromalidae and those of P. vindemmiae in particular.
Collapse
Affiliation(s)
- V E Gokhman
- Russian Entomological Society, Moscow, Russia
| | - A S Ryabinin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia 3 Center for
| | - R A Bykov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia 3 Center for
| | - Yu Yu Ilinsky
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Center for Immunology and Cell Biology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
4
|
Siozios S, Nadal-Jimenez P, Azagi T, Sprong H, Frost CL, Parratt SR, Taylor G, Brettell L, Liew KC, Croft L, King KC, Brockhurst MA, Hypša V, Novakova E, Darby AC, Hurst GDD. Genome dynamics across the evolutionary transition to endosymbiosis. Curr Biol 2024; 34:5659-5670.e7. [PMID: 39549700 DOI: 10.1016/j.cub.2024.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 04/12/2024] [Accepted: 10/15/2024] [Indexed: 11/18/2024]
Abstract
Endosymbiosis-where a microbe lives and replicates within a host-is an important contributor to organismal function that has accelerated evolutionary innovations and catalyzed the evolution of complex life. The evolutionary processes associated with transitions to endosymbiosis, however, are poorly understood. Here, we leverage the wide diversity of host-associated lifestyles of the genus Arsenophonus to reveal the complex evolutionary processes that occur during the transition to a vertically transmitted endosymbiotic lifestyle from strains maintained solely by horizontal (infectious) transmission. We compared the genomes of 38 strains spanning diverse lifestyles from horizontally transmitted pathogens to obligate interdependent endosymbionts. Among culturable strains, we observed those with vertical transmission had larger genome sizes than closely related horizontally transmitting counterparts, consistent with evolutionary innovation and the rapid gain of new functions. Increased genome size was a consequence of prophage and plasmid acquisition, including a cargo of type III effectors, alongside the concomitant loss of CRISPR-Cas genome defense systems, enabling mobile genetic element expansion. Persistent endosymbiosis was also associated with loss of type VI secretion, which we hypothesize to be a consequence of reduced microbe-microbe competition. Thereafter, the transition to endosymbiosis with strict vertical inheritance was associated with the expected relaxation of purifying selection, gene pseudogenization, metabolic degradation, and genome reduction. We argue that reduced phage predation in endosymbiotic niches drives the loss of genome defense systems driving rapid genome expansion upon the adoption of endosymbiosis and vertical transmission. This remodeling enables rapid horizontal gene transfer-mediated evolutionary innovation and precedes the reductive evolution traditionally associated with adaptation to endosymbiosis.
Collapse
Affiliation(s)
- Stefanos Siozios
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L59 7ZB, UK.
| | - Pol Nadal-Jimenez
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L59 7ZB, UK
| | - Tal Azagi
- Centre for Infectious Diseases Research, National Institute for Public Health and the Environment, 3720 BA Bilthoven, the Netherlands
| | - Hein Sprong
- Centre for Infectious Diseases Research, National Institute for Public Health and the Environment, 3720 BA Bilthoven, the Netherlands
| | - Crystal L Frost
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L59 7ZB, UK
| | - Steven R Parratt
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L59 7ZB, UK
| | - Graeme Taylor
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Laura Brettell
- School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
| | - Kwee Chin Liew
- NSW Health Pathology Infectious Diseases Department, Wollongong Hospital, Wollongong, NSW, Australia
| | - Larry Croft
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
| | - Kayla C King
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L59 7ZB, UK; Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK; Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology & Immunology, University of British Columbia, 1365 - 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Michael A Brockhurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L59 7ZB, UK; Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Václav Hypša
- Department of Parasitology, Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic
| | - Eva Novakova
- Department of Parasitology, Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic
| | - Alistair C Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L59 7ZB, UK
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L59 7ZB, UK.
| |
Collapse
|
5
|
Feng H, Wilson ACC. Experimental uncoupling of hosts and endosymbionts. mBio 2024; 15:e0111624. [PMID: 39028184 PMCID: PMC11323540 DOI: 10.1128/mbio.01116-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Many organisms harbor heritable bacterial symbionts that offer context-specific benefits to their hosts. In some of these symbioses, symbionts live inside host cells as endosymbionts. Studying the biology of endosymbiosis is challenging because it is hard to independently cultivate hosts and endosymbionts. A recent study, using a simple defined growth medium at ambient temperature, established an axenic culture of the pea aphid's heritable bacterial endosymbiont, Candidatus Fukatsuia symbiotica (G. P. Maeda, M. K. Kelly, A. Sundar, and N. A. Moran, mBio 15:e03253-23, 2024, https://doi.org/10.1128/mbio.03253-23). Notably, the monoculture was capable of host recolonization, was stably transmitted, and returned similar host phenotypes to those observed in native infections. This advance in uncoupling the cultivation of an endosymbiont and its host opens avenues for genetic manipulation of the endosymbiont that will facilitate hypothesis-driven work to explore the mechanisms of host-endosymbiont biology and potentially facilitate the development of symbiont-mediated practical-application biotechnologies.
Collapse
Affiliation(s)
- Honglin Feng
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, Louisiana, USA
| | - Alex C. C. Wilson
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
6
|
Garrido-Bautista J, Norte AC, Moreno-Rueda G, Nadal-Jiménez P. Ecological determinants of prevalence of the male-killing bacterium Arsenophonus nasoniae. J Invertebr Pathol 2024; 203:108073. [PMID: 38346575 DOI: 10.1016/j.jip.2024.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Male-killing bacteria are found in a broad range of arthropods. Arsenophonus nasoniae is a male-killing bacterium, causing a 80% reduction of the male progeny in infected Nasonia vitripennis wasps. Although the discovery of A. nasoniae dates from the early 80's, knowledge about the biology and ecology of this endosymbiont is still scarce. One of these poorly studied features is the ecological factors underlying A. nasoniae incidence on its Nasonia spp. hosts in different geographical locations. Here, we studied the prevalence of A. nasoniae in Iberian wild populations of its host N. vitripennis. This wasp species is a common parasitoid of the blowfly Protocalliphora azurea pupae, which in turn is a parasite of hole-nesting birds, such as the blue tit (Cyanistes caeruleus). We also examined the effects of bird rearing conditions on the prevalence of A. nasoniae through a brood size manipulation experiment (creating enlarged, control and reduced broods). Both the wasp and bacterium presence were tested through PCR assays in blowfly pupae. We found A. nasoniae in almost half (47%) of nests containing blowflies parasitized by N. vitripennis. The prevalence of A. nasoniae was similar in the two geographical areas examined (central Portugal and southeastern Spain) and the probability of infection by A. nasoniae was independent of the number of blowfly pupae in the nest. Experimental manipulation of brood size did not affect the prevalence of A. nasoniae nor the prevalence of its host, N. vitripennis. These results suggest that the incidence of A. nasoniae in natural populations of N. vitripennis is high in the Iberian Peninsula, and the infestation frequency of nests by N. vitripennis carrying A. nasoniae is spatially stable in this geographical region independently of bird rearing conditions.
Collapse
Affiliation(s)
- Jorge Garrido-Bautista
- Department of Zoology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Ana Cláudia Norte
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Gregorio Moreno-Rueda
- Department of Zoology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Pol Nadal-Jiménez
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZB Liverpool, United Kingdom; Departments of Vector Biology, Tropical Disease Biology, and Centre for Neglected Topical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| |
Collapse
|
7
|
Nadal-Jimenez P, Frost CL, Cláudia Norte A, Garrido-Bautista J, Wilkes TE, Connell R, Rice A, Krams I, Eeva T, Christe P, Moreno-Rueda G, Hurst GDD. The son-killer microbe Arsenophonus nasoniae is a widespread associate of the parasitic wasp Nasonia vitripennis in Europe. J Invertebr Pathol 2023:107947. [PMID: 37285901 DOI: 10.1016/j.jip.2023.107947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
Heritable microbes that exhibit reproductive parasitism are common in insects. One class of these are the male-killing bacteria, which are found in a broad range of insect hosts. Commonly, our knowledge of the incidence of these microbes is based on one or a few sampling sites, and the degree and causes of spatial variation are unclear. In this paper, we examine the incidence of the son-killer microbe Arsenophonus nasoniae across European populations of its wasp host, Nasonia vitripennis. In preliminary work, we noticed two female N. vitripennis producing highly female biased sex ratios in a field study from the Netherlands and Germany. When tested, the brood from Germany was revealed to be infected with A. nasoniae. We then completed a broad survey in 2012, in which fly pupal hosts of N. vitripennis were collected from vacated birds' nests from four European populations, N. vitripennis wasps allowed to emerge and then tested for A. nasoniae presence through PCR assay. We then developed a new screening methodology based on direct PCR assays of fly pupae and applied this to ethanol-preserved material collected from great tit (Parus major) nests in Portugal. These data show A. nasoniae is found widely in European N. vitripennis, being present in Germany, the UK, Finland, Switzerland and Portugal. Samples varied in the frequency with which they carry A. nasoniae, from being rare to being present in 50% of the pupae parasitised by N. vitripennis. Direct screening of ethanol-preserved fly pupae was an effective method for revealing both wasp and A. nasoniae infection, and will facilitate sample transport across national boundaries. Future research should examine the causes of variation in frequency, in particular testing the hypothesis that N. vitripennis superparasitism rates drive the variation in A. nasoniae frequency through providing opportunities for infectious transmission.
Collapse
Affiliation(s)
- Pol Nadal-Jimenez
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Crystal L Frost
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Ana Cláudia Norte
- University of Coimbra, Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | | | - Timothy E Wilkes
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Rowan Connell
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Annabel Rice
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Indrikis Krams
- Department of Biotechnology, Daugavpils University, Daugavpils 5404, Latvia; Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Riga 1004, Latvia; Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia; Latvian Biomedical Research and Study Centre, Riga 1067, Latvia
| | - Tapio Eeva
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Phillipe Christe
- Department of Ecology and Evolution, University of Lausanne, Biophore - CH-1015 Lausanne, Switzerland
| | - Gregorio Moreno-Rueda
- Department of Zoology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Gregory D D Hurst
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom.
| |
Collapse
|
8
|
Maruyama J, Inoue H, Hirose Y, Nakabachi A. 16S rRNA Gene Sequencing of Six Psyllid Species of the Family Carsidaridae Identified Various Bacteria Including Symbiopectobacterium. Microbes Environ 2023; 38:ME23045. [PMID: 37612118 PMCID: PMC10522848 DOI: 10.1264/jsme2.me23045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 08/25/2023] Open
Abstract
Psyllids (Hemiptera: Sternorrhyncha: Psylloidea) are plant sap-sucking insects that are closely associated with various microbes. To obtain a more detailed understanding of the ecological and evolutionary behaviors of microbes in Psylloidea, the bacterial populations of six psyllid species, belonging to the family Carsidaridae, were analyzed using high-throughput amplicon sequencing of the 16S rRNA gene. The majority of the secondary symbionts identified in the present study were gammaproteobacteria, particularly those of the order Enterobacterales, including Arsenophonus and Sodalis, which are lineages found in a wide variety of insect hosts. Additionally, Symbiopectobacterium, another Enterobacterales lineage, which has recently been recognized and increasingly shown to be vertically transmitted and mutualistic in various invertebrates, was identified for the first time in Psylloidea. This lineage is closely related to Pectobacterium spp., which are plant pathogens, but forms a distinct clade exhibiting no pathogenicity to plants. Non-Enterobacterales gammaproteobacteria found in the present study were Acinetobacter, Pseudomonas (both Pseudomonadales), Delftia, Comamonas (both Burkholderiales), and Xanthomonas (Xanthomonadales), a putative plant pathogen. Regarding alphaproteobacteria, three Wolbachia (Rickettsiales) lineages belonging to supergroup B, the major group in insect lineages, were detected in four psyllid species. In addition, a Wolbachia lineage of supergroup O, a minor group recently found for the first time in Psylloidea, was detected in one psyllid species. These results suggest the pervasive transfer of bacterial symbionts among animals and plants, providing deeper insights into the evolution of the interactions among these organisms.
Collapse
Affiliation(s)
- Junnosuke Maruyama
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization, Higashihiroshima, Hiroshima 739–2494, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| | - Atsushi Nakabachi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
- Research Institute for Technological Science and Innovation, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| |
Collapse
|