1
|
Wang X, Ge M, He X. Effect of Green Synthesized Fe 3O 4NP Priming on Alfalfa Seed Germination Under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1236. [PMID: 40284124 PMCID: PMC12030557 DOI: 10.3390/plants14081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Drought stress is one of the key environmental factors restricting the germination of alfalfa seeds (Medicago sativa L.). Nanopriming is an innovative seed-priming technology able to meet economic, agronomic, and environmental needs in agriculture. However, the use of conventional nanomaterials is hampered by high costs, environmental risks, and biotoxicity. In this study, we synthesized iron oxide nanoparticles (Fe3O4NPs) using seasonal Ginkgo biloba leaf extracts (collected from August to November) obtained via an enzymatic ultrasonic-assisted method. The synthesized Fe3O4NPs were characterized using SEM, EDS, DLS, FTIR, UV-Vis, and XRD. To investigate the effects of Fe3O4NP priming on alfalfa seed germination under drought stress, germination and pot experiments were conducted with five Fe3O4NP priming concentrations (unprimed, 0, 20, 40, and 60 mg/L) and three PEG-6000 concentrations (0%, 10%, and 15%) to simulate normal, moderate, and severe drought conditions. The results showed that leaf extracts collected in November exhibited the highest flavonoid content (12.8 mg/g), successfully yielding bioactive-capped spherical Fe3O4NPs with a particle size of 369.5 ± 100.6 nm. Germination experiments revealed that under severe drought stress (15% PEG-6000), the 40 mg/L Fe3O4NP treatment most effectively enhanced seed vigor, increasing the germination rate, vigor index, and α-amylase activity by 22.1%, 189.4%, and 35.5% (p < 0.05), respectively, compared to controls. Under moderate drought stress (10% PEG-6000), the 20 mg/L Fe3O4NP treatment optimally improved germination traits, increasing the germination rate by 25.5% and seedling elongation by 115.6%. The pot experiments demonstrated morphological adaptations in alfalfa seedlings: under moderate drought stress, the 40 mg/L Fe3O4NPs significantly increased lateral root numbers, while under severe drought stress, the 60 mg/L Fe3O4NPs increased the root surface area by 20.5% and preserved the roots' structural integrity compared to controls. These findings highlight that Fe3O4NPs synthesized via Ginkgo leaf extracts and enzymatic ultrasonic methods exhibit promising agricultural potential. The optimal Fe3O4NP priming concentrations enhanced seed vigor, germination traits, and drought resistance by modulating root morphology, with concentration-specific efficacy under varying drought intensities.
Collapse
Affiliation(s)
| | | | - Xueqing He
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
2
|
Maphosa S, Steyn M, Lebre PH, Gokul JK, Convey P, Marais E, Maggs-Kölling G, Cowan DA. Rhizosphere bacterial communities of Namib Desert plant species: Evidence of specialised plant-microbe associations. Microbiol Res 2025; 293:128076. [PMID: 39884152 DOI: 10.1016/j.micres.2025.128076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/30/2024] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
Rhizosphere microbial communities are intimately associated with plant root surfaces. The rhizosphere microbiome is recruited from the surrounding soil and is known to impact positively on the plant host via enhanced resistance to pathogens, increased nutrient availability, growth stimulation and increased resistance to desiccation. Desert ecosystems harbour a diversity of perennial and annual plant species, generally exhibiting considerable physiological adaptation to the low-water environment. In this study, we explored the rhizosphere bacterial microbiomes associated with selected desert plant species. The rhizosphere bacterial communities of 11 plant species from the central Namib Desert were assessed using 16S rRNA gene-dependent phylogenetic analyses. The rhizosphere microbial community of each host plant species was compared with control soils collected from their immediate vicinity, and with those of all other host plants. Rhizosphere and control soil bacterial communities differed significantly and were influenced by both location and plant species. Rhizosphere-associated genera included 67 known plant growth-promoting taxa, including Rhizobium, Bacillus, Microvirga, Kocuria and Paenibacillus. Other than Kocuria, these genera constituted the 'core' rhizosphere bacterial microbiome, defined as being present in > 90 % of the rhizosphere communities. Nine of the 11 desert plant species harboured varying numbers and proportions of species-specific microbial taxa. Predictive analyses of functional pathways linked to rhizosphere microbial taxa showed that these were significantly enriched in the biosynthesis or degradation of a variety of substances such as sugars, secondary metabolites, phenolic compounds and antimicrobials. Overall, our data suggest that plant species in the Namib Desert recruit unique taxa to their rhizosphere bacterial microbiomes that may contribute to their resilience in this extreme environment.
Collapse
Affiliation(s)
- Silindile Maphosa
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Mégan Steyn
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Jarishma K Gokul
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa; Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Peter Convey
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom; Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa; School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Eugene Marais
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
| | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa.
| |
Collapse
|
3
|
Maestro-Gaitán I, Redondo-Nieto M, González-Bodí S, Rodríguez-Casillas L, Matías J, Bolaños L, Reguera M. Insights into quinoa endophytes: core bacterial communities reveal high stability to water stress and genotypic variation. ENVIRONMENTAL MICROBIOME 2025; 20:16. [PMID: 39901227 PMCID: PMC11789408 DOI: 10.1186/s40793-025-00673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND Plant endophytes, comprising non-pathogenic bacteria, fungi, and archaea, inhabit various plant parts, including roots, stems, leaves, and seeds. These microorganisms play a crucial role in plant development by enhancing germination, growth, and stress resilience. Seed endophytes, in particular, represent the most adapted and conserved segment of plant microbiota, significantly influencing the initial stages of plant growth and microbial community establishment. This study investigates the impact of environmental and genotypic factors on the endophytic communities of Chenopodium quinoa Willd. (quinoa), a crop notable for its adaptability and nutritional value. RESULTS We aimed to characterize the core endophytic communities in quinoa seeds and roots from two distinct genotypes under well-watered (WW) and water-deficit (WD) conditions, utilizing various soil infusions as inoculants to explore potential changes in these endophytes. Our findings reveal distinct changes with quinoa seeds exhibiting a high degree of conservation in their endophytic microbiome, even between maternal and offspring seeds, with specific bacterial taxa showing only minor differences. Tissue specificity emerged as a key factor, with seeds maintaining a stable microbial community, while roots exhibited more pronounced shifts, highlighting the tissue-dependent patterns of microbial enrichment. CONCLUSIONS The results highlight the stability and conservation of endophytic communities in quinoa seeds, even under varying water conditions and across different genotypes, emphasizing the role of tissue specificity in shaping microbial associations. These findings suggest that quinoa-associated endophytes, particularly those conserved in seeds, may play a crucial role in enhancing drought resilience. Understanding the dynamics of plant-microbe interactions in quinoa is vital for developing stress-resilient crop varieties, supporting sustainable agricultural practices, and ensuring food security in the face of climate change and environmental challenges.
Collapse
Affiliation(s)
- Isaac Maestro-Gaitán
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Miguel Redondo-Nieto
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Sara González-Bodí
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Laura Rodríguez-Casillas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, Spain
| | - Javier Matías
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Instituto de Investigaciones Agrarias Finca La Orden, Área de Cultivos Extensivos, A5 km372, Badajoz, 06187, Spain
| | - Luis Bolaños
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, 28049, Spain
| | - María Reguera
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|
4
|
You X, Zhao X, Han X. The response of rare bacterial in rhizosphere of tea plants to drought stress was higher than that of abundant bacterial. BMC PLANT BIOLOGY 2024; 24:1144. [PMID: 39609759 PMCID: PMC11606029 DOI: 10.1186/s12870-024-05860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Drought can seriously affect the yield and quality of tea. The interaction between rhizosphere microorganisms and tea plants could enhance the drought resistance of tea plants. However, there are few studies on the effects of abundant and rare microorganisms on tea plants. In this study, the contributions of abundant and rare bacteria in the rhizosphere microorganisms of 'FudingDabaicha' and 'Baiye No.1' to the resistance of tea plants to drought stress were studied using 16SrRNA sequencing, co-occurrence network analysis, and PLS-PM modeling analysis. By measuring the contents of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), malondialdehyde (MDA), proline, soluble sugar and soluble protein, it was found that the activity of antioxidant enzymes and the content of osmotic substances increased significantly after drought stress (p < 0.001). In the co-occurrence network of the two varieties, the average degree, clustering coefficient, and modularity index of the rare bacteria were greater than those of the abundant bacteria, and the path coefficient of the rare bacteria to drought was greater than that of the abundant bacteria. The contribution of rare microorganisms in 'FudingDabaicha' to drought stress was greater than that in 'Baiye No.1'. The rare bacteria of the two varieties were positively correlated with amino acids and negatively correlated with lipids. The results of this study will provide new insights for the use of rhizosphere microorganisms in improving the drought resistance of tea plants.
Collapse
Affiliation(s)
- Xinhan You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271000, China
| | - Xiaoxia Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271000, China
| | - Xiaoyang Han
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271000, China.
| |
Collapse
|
5
|
Ajijah N, Fiodor A, Dziewit L, Pranaw K. Biological amelioration of water stress in rapeseed (Brassica napus L.) by exopolysaccharides-producing Pseudomonas protegens ML15. PHYSIOLOGIA PLANTARUM 2024; 176:e70012. [PMID: 39686881 DOI: 10.1111/ppl.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Rapeseed (Brassica napus L.) is a globally significant oilseed crop with high economic value. However, water deficit significantly limits its growth and productivity. Exopolysaccharides (EPS)-producing bacteria offer a promising strategy to counteract drought stress, leveraging their high water retention capabilities and plant growth-promoting (PGP) properties. This study was conducted to characterize the PGP traits of selected EPS-producing bacteria strains and evaluate its efficacy in enhancing rapeseed resilience under drought conditions. Among five EPS-producing bacteria evaluated, Pseudomonas protegens ML15 was selected for its best performance. This strain demonstrated a range of plant growth-promoting traits, such as the solubilization of phosphate, potassium, and zinc, alongside the production of ammonia, siderophores, and proline. It also exhibited antioxidant activity and the ability to form biofilms, even under water-stressed conditions. Inoculation of rapeseed with strain ML15 increased germination percentages and seedling length. Notably, whether rapeseed plants were subjected to drought-induced stress or maintained under normal conditions, treatment with P. protegens ML15 inoculation consistently improved plant length and overall biomass. Under drought-stressed conditions, inoculated plants exhibited reduced malondialdehyde levels and increased vegetation indices, chlorophyll, protein, proline, and phenolic content. They also showed enhanced activity of antioxidant enzymes, such as catalase and peroxidase, compared to uninoculated rapeseed plants. These findings underscore the potential of EPS-producing bacteria like P. protegens ML15 to mitigate water stress in plants, providing ecological and economic benefits that support agricultural sustainability.
Collapse
Affiliation(s)
- Nur Ajijah
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Angelika Fiodor
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
6
|
Gao W, Chen X, He J, Sha A, Ren Y, Wu P, Li Q. The impact of kaolin mining activities on bacterial diversity and community structure in the rhizosphere soil of three local plants. Front Microbiol 2024; 15:1424687. [PMID: 39314884 PMCID: PMC11417686 DOI: 10.3389/fmicb.2024.1424687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/22/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Thus far, the impact of kaolin mining activities on the surrounding native plants and rhizosphere microecology has not been fully understood. Methods In this study, we used 16S rRNA high-throughput sequencing to examine the impact of kaolin mining on the rhizosphere bacterial communities and functions of three local plant species: Conyza bonariensis, Artemisia annua, and Dodonaea viscosa. Results The results showed that kaolin mining significantly reduced the diversity of rhizosphere bacteria in these plants, as indicated by the Shannon, Simpson, Chao1, and observed species indices (p < 0.05). Kaolin mining had an impact on the recruitment of three rhizosphere bacteria native to the area: Actinoplanes, RB41, and Mycobacterium. These bacteria were found to be more abundant in the rhizosphere soil of three local plants than in bulk soil, yet the mining of kaolin caused a decrease in their abundance (p < 0.05). Interestingly, Ralstonia was enriched in the rhizosphere of these plants found in kaolin mining areas, suggesting its resilience to environmental stress. Furthermore, the three plants had different dominant rhizosphere bacterial populations in kaolin mining areas, such as Nocardioides, Pseudarthrobacter, and Sphingomonas, likely due to the unique microecology of the plant rhizosphere. Kaolin mining activities also caused a shift in the functional diversity of rhizosphere bacteria in the three local plants, with each plant displaying different functions to cope with kaolin mining-induced stress, such as increased abundance of the GlpM family and glucan-binding domain. Discussion This study is the first to investigate the effects of kaolin mining on the rhizosphere microecology of local plants, thus contributing to the establishment of soil microecological health monitoring indicators to better control soil pollution in kaolin mining areas.
Collapse
Affiliation(s)
- Wei Gao
- Clinical Medical College and Affiliated Hospital of Chengdu University, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Xiaodie Chen
- Clinical Medical College and Affiliated Hospital of Chengdu University, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Jing He
- Clinical Medical College and Affiliated Hospital of Chengdu University, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Clinical Medical College and Affiliated Hospital of Chengdu University, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Yuanhang Ren
- Clinical Medical College and Affiliated Hospital of Chengdu University, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiang Li
- Clinical Medical College and Affiliated Hospital of Chengdu University, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Zou J, Xin J, Wang T, Song Q. Impact of alternate partial root-zone irrigation on the rhizosphere microbiota of alfalfa plants inoculated with rhizobia. Front Microbiol 2024; 15:1372542. [PMID: 39050636 PMCID: PMC11267259 DOI: 10.3389/fmicb.2024.1372542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Water is an important constraint on alfalfa (Medicago sativa) production in arid and semiarid areas, and alternate irrigation in root areas has water-saving potential for alfalfa production. To investigate the impact of alternate partial root-zone irrigation (APRI) on the rhizosphere soil microorganisms of alfalfa, this study subjected alfalfa plants to different irrigation methods and irrigation levels. The growth status and rhizosphere soil microbial community diversity of alfalfa plants under alternate root-zone watering treatment were analyzed through laboratory experiments and high-throughput sequencing. The results showed that at soil moisture levels of 80% field moisture capacity (FMC) and 60% FMC, APRI had no significant impact on the biomass or nodule number of alfalfa. However, 40% FMC significantly reduced the individual plant dry weight, chlorophyll content, and nodule number of the alfalfa plants. APRI increased the relative abundance of Actinomycetes in the alfalfa rhizosphere soil. Moreover, at 60% FMC, the MBC and MBN of rhizosphere, relative abundance of Actinobacteria and unclassified K fungi and Chao 1 index of bacteria significantly increased under APRI treatment. While relative abundance of Ascomycetes and Proteobacteria in the alfalfa rhizosphere significantly reduced under 60% FMC + APRI treatment. In summary, under the same irrigation conditions, APRI did not significantly affect the growth of alfalfa in the short term. And 60%FMC + APRI treatment did significantly affect the groups, structure and diversity of the rhizosphere soil microbial communities.
Collapse
Affiliation(s)
- Junhong Zou
- School of Grassland Science, Beijing Forestry University, Beijing, China
- Inner Mongolia Horqin Grassland Ecosystem National Observation and Research Station, Inner Mongolia, China
| | - Jianhui Xin
- School of Grassland Science, Beijing Forestry University, Beijing, China
- Inner Mongolia Horqin Grassland Ecosystem National Observation and Research Station, Inner Mongolia, China
| | - Tiemei Wang
- School of Grassland Science, Beijing Forestry University, Beijing, China
- Inner Mongolia Horqin Grassland Ecosystem National Observation and Research Station, Inner Mongolia, China
| | - Qing Song
- School of Grassland Science, Beijing Forestry University, Beijing, China
- Inner Mongolia Horqin Grassland Ecosystem National Observation and Research Station, Inner Mongolia, China
| |
Collapse
|
8
|
Zhou Z, Li J, Gao Y, Wang X, Wang R, Huang H, Zhang Y, Zhao L, Wang P. Research on drought stress in Medicago sativa L. from 1998 to 2023: a bibliometric analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1406256. [PMID: 38872890 PMCID: PMC11169798 DOI: 10.3389/fpls.2024.1406256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
Alfalfa (Medicago sativa L.) is one of the most important forage crops in the world. Drought is recognized as a major challenge limiting alfalfa production and threatening food security. Although some literature reviews have been conducted in this area, bibliometric reviews based on large amounts of published data are still lacking. In this paper, a bibliometric analysis of alfalfa drought stress from 1998-2023 was conducted using the Web of Science Core Collection database in order to assess global trends in alfalfa drought stress research and to provide new directions for future research. The results showed that the annual publication output maintained an increase in most years, with China and the United States contributing significantly to the field. Most of the journals published are specialized journals in botany, environmental science, soil science and crop science, as well as related agribusiness journals. "plant growth" and "yield" were the most frequently used keywords, reflecting the important purpose of research in this field. And two main research directions were identified: research on drought response mechanism of alfalfa and exploration of drought-resistant technology. In addition, physiological, biochemical, and molecular responses of drought tolerance and high yield in alfalfa, transgenics, and microbial fertilizer research have been hot research topics in recent years and may continue in the future. The ultimate goal of this paper is to provide a foundational reference for future research on alfalfa's drought resistance and yield optimization mechanisms, thereby enhancing the crop's application in agricultural production.
Collapse
Affiliation(s)
- Zijun Zhou
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Junqin Li
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Yang Gao
- School of Karst Science, Guizhou Normal University, Guiyang, Guizhou, China
| | - Xiangtao Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Rui Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Haiyan Huang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Yu Zhang
- School of Karst Science, Guizhou Normal University, Guiyang, Guizhou, China
| | - Lili Zhao
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Puchang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| |
Collapse
|
9
|
Santander C, González F, Pérez U, Ruiz A, Aroca R, Santos C, Cornejo P, Vidal G. Enhancing Water Status and Nutrient Uptake in Drought-Stressed Lettuce Plants ( Lactuca sativa L.) via Inoculation with Different Bacillus spp. Isolated from the Atacama Desert. PLANTS (BASEL, SWITZERLAND) 2024; 13:158. [PMID: 38256712 PMCID: PMC10818642 DOI: 10.3390/plants13020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Drought is a major challenge for agriculture worldwide, being one of the main causes of losses in plant production. Various studies reported that some soil's bacteria can improve plant tolerance to environmental stresses by the enhancement of water and nutrient uptake by plants. The Atacama Desert in Chile, the driest place on earth, harbors a largely unexplored microbial richness. This study aimed to evaluate the ability of various Bacillus sp. from the hyper arid Atacama Desert in the improvement in tolerance to drought stress in lettuce (Lactuca sativa L. var. capitata, cv. "Super Milanesa") plants. Seven strains of Bacillus spp. were isolated from the rhizosphere of the Chilean endemic plants Metharme lanata and Nolana jaffuelii, and then identified using the 16s rRNA gene. Indole acetic acid (IAA) production, phosphate solubilization, nitrogen fixation, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity were assessed. Lettuce plants were inoculated with Bacillus spp. strains and subjected to two different irrigation conditions (95% and 45% of field capacity) and their biomass, net photosynthesis, relative water content, photosynthetic pigments, nitrogen and phosphorus uptake, oxidative damage, proline production, and phenolic compounds were evaluated. The results indicated that plants inoculated with B. atrophaeus, B. ginsengihumi, and B. tequilensis demonstrated the highest growth under drought conditions compared to non-inoculated plants. Treatments increased biomass production and were strongly associated with enhanced N-uptake, water status, chlorophyll content, and photosynthetic activity. Our results show that specific Bacillus species from the Atacama Desert enhance drought stress tolerance in lettuce plants by promoting several beneficial plant traits that facilitate water absorption and nutrient uptake, which support the use of this unexplored and unexploited natural resource as potent bioinoculants to improve plant production under increasing drought conditions.
Collapse
Affiliation(s)
- Christian Santander
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile; (C.S.); (F.G.); (U.P.); (A.R.); (C.S.)
- Grupo de Ingeniería Ambiental y Biotecnología, Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción 4070411, Chile
| | - Felipe González
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile; (C.S.); (F.G.); (U.P.); (A.R.); (C.S.)
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile
| | - Urley Pérez
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile; (C.S.); (F.G.); (U.P.); (A.R.); (C.S.)
| | - Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile; (C.S.); (F.G.); (U.P.); (A.R.); (C.S.)
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain;
| | - Cledir Santos
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile; (C.S.); (F.G.); (U.P.); (A.R.); (C.S.)
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, CERES, La Palma, Quillota 2260000, Chile
| | - Gladys Vidal
- Grupo de Ingeniería Ambiental y Biotecnología, Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción 4070411, Chile
| |
Collapse
|
10
|
Chen Y, Fu W, Xiao H, Zhai Y, Luo Y, Wang Y, Liu Z, Li Q, Huang J. A Review on Rhizosphere Microbiota of Tea Plant ( Camellia sinensis L): Recent Insights and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19165-19188. [PMID: 38019642 DOI: 10.1021/acs.jafc.3c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Rhizosphere microbial colonization of the tea plant provides many beneficial functions for the host, But the factors that influence the composition of these rhizosphere microbes and their functions are still unknown. In order to explore the interaction between tea plants and rhizosphere microorganisms, we summarized the current studies. First, the review integrated the known rhizosphere microbial communities of tea tree, including bacteria, fungi, and arbuscular mycorrhizal fungi. Then, various factors affecting tea rhizosphere microorganisms were studied, including: endogenous factors, environmental factors, and agronomic practices. Finally, the functions of rhizosphere microorganisms were analyzed, including (a) promoting the growth and quality of tea trees, (b) alleviating biotic and abiotic stresses, and (c) improving soil fertility. Finally, we highlight the gaps in knowledge of tea rhizosphere microorganisms and the future direction of development. In summary, understanding rhizosphere microbial interactions with tea plants is key to promoting the growth, development, and sustainable productivity of tea plants.
Collapse
Affiliation(s)
- Yixin Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wenjie Fu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Han Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yuke Zhai
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 3100058, P.R. China
| | - Yingzi Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Qin Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
- Institute of Soil and Water Resources and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 3100058, P.R. China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| |
Collapse
|
11
|
Fan W, Xiao Y, Dong J, Xing J, Tang F, Shi F. Variety-driven rhizosphere microbiome bestows differential salt tolerance to alfalfa for coping with salinity stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1324333. [PMID: 38179479 PMCID: PMC10766110 DOI: 10.3389/fpls.2023.1324333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Soil salinization is a global environmental issue and a significant abiotic stress that threatens crop production. Root-associated rhizosphere microbiota play a pivotal role in enhancing plant tolerance to abiotic stresses. However, limited information is available concerning the specific variations in rhizosphere microbiota driven by different plant genotypes (varieties) in response to varying levels of salinity stress. In this study, we compared the growth performance of three alfalfa varieties with varying salt tolerance levels in soils with different degrees of salinization. High-throughput 16S rRNA and ITS sequencing were employed to analyze the rhizosphere microbial communities. Undoubtedly, the increasing salinity significantly inhibited alfalfa growth and reduced rhizosphere microbial diversity. However, intriguingly, salt-tolerant varieties exhibited relatively lower susceptibility to salinity, maintaining more stable rhizosphere bacterial community structure, whereas the reverse was observed for salt-sensitive varieties. Bacillus emerged as the dominant species in alfalfa's adaptation to salinity stress, constituting 21.20% of the shared bacterial genera among the three varieties. The higher abundance of Bacillus, Ensifer, and Pseudomonas in the rhizosphere of salt-tolerant alfalfa varieties is crucial in determining their elevated salt tolerance. As salinity levels increased, salt-sensitive varieties gradually accumulated a substantial population of pathogenic fungi, such as Fusarium and Rhizoctonia. Furthermore, rhizosphere bacteria of salt-tolerant varieties exhibited increased activity in various metabolic pathways, including biosynthesis of secondary metabolites, carbon metabolism, and biosynthesis of amino acids. It is suggested that salt-tolerant alfalfa varieties can provide more carbon sources to the rhizosphere, enriching more effective plant growth-promoting bacteria (PGPB) such as Pseudomonas to mitigate salinity stress. In conclusion, our results highlight the variety-mediated enrichment of rhizosphere microbiota in response to salinity stress, confirming that the high-abundance enrichment of specific dominant rhizosphere microbes and their vital roles play a significant role in conferring high salt adaptability to these varieties.
Collapse
Affiliation(s)
- Wenqiang Fan
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanzi Xiao
- College of Agriculture and Forestry, Hulunbuir University, Hulunber, China
| | - Jiaqi Dong
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Xing
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fang Tang
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengling Shi
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
12
|
Martins BR, Siani R, Treder K, Michałowska D, Radl V, Pritsch K, Schloter M. Cultivar-specific dynamics: unravelling rhizosphere microbiome responses to water deficit stress in potato cultivars. BMC Microbiol 2023; 23:377. [PMID: 38036970 PMCID: PMC10691024 DOI: 10.1186/s12866-023-03120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Growing evidence suggests that soil microbes can improve plant fitness under drought. However, in potato, the world's most important non-cereal crop, the role of the rhizosphere microbiome under drought has been poorly studied. Using a cultivation independent metabarcoding approach, we examined the rhizosphere microbiome of two potato cultivars with different drought tolerance as a function of water regime (continuous versus reduced watering) and manipulation of soil microbial diversity (i.e., natural (NSM), vs. disturbed (DSM) soil microbiome). RESULTS Water regime and soil pre-treatment showed a significant interaction with bacterial community composition of the sensitive (HERBST) but not the resistant cultivar (MONI). Overall, MONI had a moderate response to the treatments and its rhizosphere selected Rhizobiales under reduced watering in NSM soil, whereas Bradyrhizobium, Ammoniphilus, Symbiobacterium and unclassified Hydrogenedensaceae in DSM soil. In contrast, HERBST response to the treatments was more pronounced. Notably, in NSM soil treated with reduced watering, the root endophytic fungus Falciphora and many Actinobacteriota members (Streptomyces, Glycomyces, Marmoricola, Aeromicrobium, Mycobacterium and others) were largely represented. However, DSM soil treatment resulted in no fungal taxa and fewer enrichment of these Actinobacteriota under reduced watering. Moreover, the number of bacterial core amplicon sequence variants (core ASVs) was more consistent in MONI regardless of soil pre-treatment and water regimes as opposed to HERBST, in which a marked reduction of core ASVs was observed in DSM soil. CONCLUSIONS Besides the influence of soil conditions, our results indicate a strong cultivar-dependent relationship between the rhizosphere microbiome of potato cultivars and their capacity to respond to perturbations such as reduced soil moisture. Our study highlights the importance of integrating soil conditions and plant genetic variability as key factors in future breeding programs aiming to develop drought resistance in a major food crop like potato. Elucidating the molecular mechanisms how plants recruit microbes from soil which help to mitigate plant stress and to identify key microbial taxa, which harbour the respective traits might therefore be an important topic for future research.
Collapse
Affiliation(s)
- Benoit Renaud Martins
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
| | - Roberto Siani
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Chair for Environmental Microbiology, Technical University of Munich, Freising, Germany
| | - Krzysztof Treder
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Bonin Division, Department of Potato Protection and Seed Science at Bonin, 76-009, Bonin, Bonin Str 3, Poland
| | - Dorota Michałowska
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Bonin Division, Department of Potato Protection and Seed Science at Bonin, 76-009, Bonin, Bonin Str 3, Poland
| | - Viviane Radl
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Karin Pritsch
- Research Unit for Environmental Simulation (EUS), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Chair for Environmental Microbiology, Technical University of Munich, Freising, Germany
| |
Collapse
|
13
|
Xing J, Fan W, Wang J, Shi F. Variety-Driven Effect of Rhizosphere Microbial-Specific Recruitment on Drought Tolerance of Medicago ruthenica (L.). Microorganisms 2023; 11:2851. [PMID: 38137995 PMCID: PMC10745984 DOI: 10.3390/microorganisms11122851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
As one of the environmental factors that seriously affect plant growth and crop production, drought requires an efficient but environmentally neutral approach to mitigate its harm to plants. Soil microbiomes can interact with plants and soil to improve the adverse effects of drought. Medicago ruthenica (L.) is an excellent legume forage with strong drought tolerance, but the key role of microbes in fighting drought stress remains unclear. What kind of flora plays a key role? Is the recruitment of such flora related to its genotype? Therefore, we selected three varieties of M. ruthenica (L.) for drought treatment, analyzed their growth and development as well as their physiological and biochemical characteristics, and performed 16S rRNA high-throughput sequencing analysis on their rhizosphere soils to clarify the variety-mediated response of rhizosphere bacteria to drought stress. It was found that among the three varieties of M. ruthenica (L.), Mengnong No.2, Mengnong No.1 and Zhilixing were subjected to drought stress and showed a reduction in plant height increment of 24.86%, 34.37%, and 31.97% and in fresh weight of 39.19%, 50.22%, and 41.12%, respectively, whereas dry weight was reduced by 23.26%, 26.10%, and 24.49%, respectively. At the same time, we found that the rhizosphere microbial community of Mengnong No. 2 was also less affected by drought, and it was able to maintain the diversity of rhizosphere soil microflora stable after drought stress, while Mennong No. 1 and Zhilixing were affected by drought stress, resulting in a decrease in rhizosphere soil bacterial community diversity indices to 92.92% and 82.27%, respectively. Moreover, the rhizosphere of Mengnon No. 2 was enriched with more nitrogen-fixing bacteria Rhizobium than the other two varieties of M. ruthenica (L.), which made it still have a good ability to accumulate aboveground biomass after drought stress. In conclusion, this study proves that the enrichment process of bacteria is closely related to plant genotype, and different varieties enrich different types of bacteria in the rhizosphere to help them adapt to drought stress, and the respective effects are quite different. Our results provide new evidence for the study of bacteria to improve the tolerance of plants to drought stress and lay a foundation for the screening and study mechanism of drought-tolerant bacteria in the future.
Collapse
Affiliation(s)
| | | | | | - Fengling Shi
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China; (J.X.); (W.F.); (J.W.)
| |
Collapse
|