1
|
Argueta‐Guzmán M, Spasojevic MJ, McFrederick QS. Solitary Bees Acquire and Deposit Bacteria via Flowers: Testing the Environmental Transmission Hypothesis Using Osmia lignaria, Phacelia tanacetifolia, and Apilactobacillus micheneri. Ecol Evol 2025; 15:e71138. [PMID: 40177686 PMCID: PMC11962201 DOI: 10.1002/ece3.71138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Microbial environmental transmission among individuals plays an important role in shaping the microbiomes of many species. Despite the importance of the microbiome for host fitness, empirical investigations on environmental transmission are scarce, particularly in systems where interactions across multiple trophic levels influence symbiotic dynamics. Here, we explore microbial transmission within insect microbiomes, focusing on solitary bees. Specifically, we investigate the environmental transmission hypothesis, which posits that solitary bees acquire and deposit their associated microbiota from and to their surroundings, especially flowers. Using experimental setups, we examine the transmission dynamics of Apilactobacillus micheneri, a fructophilic and acidophilic bacterium, between the solitary bee Osmia lignaria (Megachilidae) and the plant Phacelia tanacetifolia (Boraginaceae). Our results demonstrate that bees not only acquire bacteria from flowers but also deposit these microbes onto uninoculated flowers for other bees to acquire them, supporting a bidirectional microbial exchange. We therefore find empirical support for the environmental transmission hypothesis, and we discuss the multitrophic dependencies that facilitate microbial transmission between bees and flowers.
Collapse
Affiliation(s)
- Magda Argueta‐Guzmán
- Department of Life & Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
- Department of EntomologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Marko J. Spasojevic
- Department of Evolution, Ecology and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
- Environmental Dynamics and GeoEcology InstituteUniversity of CaliforniaRiversideCaliforniaUSA
| | | |
Collapse
|
2
|
Peters B, Leonhardt SD, Schloter M, Keller A. Direct and indirect effects of land use on microbiomes of trap-nesting solitary bee larvae and nests. Front Microbiol 2025; 15:1513096. [PMID: 39845038 PMCID: PMC11753253 DOI: 10.3389/fmicb.2024.1513096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction The global decline in biodiversity and insect populations highlights the urgent need to conserve ecosystem functions, such as plant pollination by solitary bees. Human activities, particularly agricultural intensification, pose significant threats to these essential services. Changes in land use alter resource and nest site availability, pesticide exposure and other factors impacting the richness, diversity, and health of solitary bee species. In this study, we investigated yet another facet currently less well investigated in such context: Microbial communities associated with wild bees play crucial roles in larval development, metabolism, immunity and overall bee health. However, the drivers and dynamics of healthy microbiome in solitary bees are still poorly understood, especially regarding the direct and indirect effects of land use on the diversity and composition of these microbial communities. Methods We examined bacterial communities in the offspring and nest materials of the Megachilid trap-nesting solitary bee, Osmia bicornis, along a gradient of land use intensification by 16S rRNA gene metabarcoding. Given that landscape composition, climatic conditions, and food resources are known to influence microbial compositions in solitary bee species, we hypothesized that land use changes would alter resources available for food and nest material collection and thereby affecting the microbiomes in offspring and their nest environments. We anticipated reduced microbial diversity and altered composition with increased land use intensification, which is known to decrease the number and diversity of resources, including the pool of floral and soil bacteria in the surrounding environment. Results As expected, we observed significant shifts in the bacterial composition and diversity of bees and their nests across varying degrees of land use intensity, differing in management types and the availability of flowers. The Shannon diversity of bacteria in nest materials (larval pollen provision, soil nest enclosure) and larval guts decreased with increasing land use intensity. However, the pupae microbiome remained unaffected, indicating a reorganization of the microbiome during metamorphosis, which is not significantly influenced by land use and available resources. Discussion Our findings provide new insights into the factors shaping environmental transmission and changes in solitary bee microbiomes. This understanding is crucial for comprehending the impacts of intensive land use on wild bee health and developing strategies to mitigate these effects.
Collapse
Affiliation(s)
- Birte Peters
- Department for Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
- Department of Biodiversity and People, Helmholtz Center Leipzig, German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Sara Diana Leonhardt
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Michael Schloter
- Comparative Microbiome Analysis, Helmholtz Centrum Munich, Munich, Germany
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Germany
| |
Collapse
|
3
|
Fernandez de Landa G, Alberoni D, Braglia C, Baffoni L, Fernandez de Landa M, Revainera PD, Quintana S, Zumpano F, Maggi MD, Di Gioia D. The Gut Microbiome of Two Wild Bumble Bee Species Native of South America: Bombus pauloensis and Bombus bellicosus. MICROBIAL ECOLOGY 2024; 87:121. [PMID: 39340556 PMCID: PMC11438738 DOI: 10.1007/s00248-024-02430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024]
Abstract
South America is populated by a wide range of bumble bee species that represent an important source of biodiversity, supporting pollination services in natural and agricultural ecosystems. These pollinators provide unique specific microbial niches, populated by a wide number of microorganisms such as symbionts, environmental opportunistic bacteria, and pathogens. Recently, it was demonstrated how microbial populations are shaped by trophic resources and environmental conditions but also by anthropogenic pressure, which strongly affects microbes' functionality. This study is focused on the impact of different land uses (natural reserve, agroecosystem, and suburban) on the gut microbiome composition of two South American bumble bees, Bombus pauloensis and Bombus bellicosus. Gut microbial DNA extracted from collected bumble bees was sequenced on the Illumina MiSeq platform and correlated with land use. Nosema ceranae load was analyzed with qPCR and correlated with microbiome data. Significant differences in gut microbiome composition between the two wild bumble bee species were highlighted, with notable variations in α- and β-diversity across study sites. Bombus bellicosus showed a high abundance of Pseudomonas, a genus that includes environmental saprobes, and was found to be the second major taxa populating the gut microbiome, probably indicating the vulnerability of this host to environmental pollution. Pathogen analysis unveils a high prevalence of N. ceranae, with B. bellicosus showing higher susceptibility. Finally, Gilliamella exhibited a negative correlation with N. ceranae, suggesting a potential protective role of this commensal taxon. Our findings underscore the importance of considering microbial dynamics in pollinator conservation strategies, highlighting potential interactions between gut bacteria and pathogens in shaping bumble bee health.
Collapse
Affiliation(s)
- Gregorio Fernandez de Landa
- Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Daniele Alberoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy.
| | - Chiara Braglia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Loredana Baffoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Mateo Fernandez de Landa
- Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Pablo Damian Revainera
- Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Silvina Quintana
- Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Francisco Zumpano
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Funes 3350, (7600), Mar del Plata, Argentina
| | - Matias Daniel Maggi
- Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Diana Di Gioia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy
| |
Collapse
|
4
|
Weinhold A, Grüner E, Keller A. Bumble bee microbiota shows temporal succession and increase of lactic acid bacteria when exposed to outdoor environments. Front Cell Infect Microbiol 2024; 14:1342781. [PMID: 38500505 PMCID: PMC10945022 DOI: 10.3389/fcimb.2024.1342781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Question The large earth bumble bee (Bombus terrestris) maintains a social core gut-microbiota, similar as known from the honey bee, which plays an important role for host health and resistance. Experiments under laboratory conditions with commercial hives are limited to vertically transmitted microbes and neglect influences of environmental factors or external acquisition of microbes. Various environmental and landscape-level factors may have an impact on the gut-microbiota of pollinating insects, with consequences for pollinator health and fitness in agroecosystems. Still, it is not fully clear whether access to different flower diversities will have a significant influence on the bumble bee microbiota. Here, we tested in a semi-field experiment if the bumble bee microbiota changes over time when exposed to different flower diversities within outdoor flight cages. We used commercial hives to distinguish between vertically and horizontally transmitted bacteria, respectively from the nest environment or the exposed outside environment. Result The sequential sampling of foraging workers over a period of 35 days indicated a temporal progression of the bumble bee microbiota when placed outside. The microbiota increased in diversity and changed in composition and variability over time. We observed a major increase in relative abundance of the families Lactobacillaceae, Bifidobacteriaceae and Weeksellaceae. In contrast, major core-taxa like Snodgrassella and Gilliamella declined in their relative abundance over time. The genus Lactobacillus showed a high diversity and strain specific turnover, so that only specific ASVs showed an increase over time, while others had a more erratic occurrence pattern. Exposure to different flower diversities had no significant influence on the progression of the bumble bee microbiota. Conclusion The bumble bee microbiota showed a dynamic temporal succession with distinct compositional changes and diversification over time when placed outdoor. The exposure of bumble bees to environmental conditions, or environmental microbes, increases dissimilarity and changes the gut-community composition. This shows the importance of environmental influences on the temporal dynamic and progression of the bumble bee microbiota.
Collapse
Affiliation(s)
- Arne Weinhold
- Cellular and Organismic Networks, Faculty of Biology, Center for Organismic Adaptation, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | |
Collapse
|
5
|
Christensen SM, Srinivas SN, McFrederick QS, Danforth BN, Buchmann SL, Vannette RL. Symbiotic bacteria and fungi proliferate in diapause and may enhance overwintering survival in a solitary bee. THE ISME JOURNAL 2024; 18:wrae089. [PMID: 38767866 PMCID: PMC11177884 DOI: 10.1093/ismejo/wrae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Host-microbe interactions underlie the development and fitness of many macroorganisms, including bees. Whereas many social bees benefit from vertically transmitted gut bacteria, current data suggests that solitary bees, which comprise the vast majority of species diversity within bees, lack a highly specialized gut microbiome. Here, we examine the composition and abundance of bacteria and fungi throughout the complete life cycle of the ground-nesting solitary bee Anthophora bomboides standfordiana. In contrast to expectations, immature bee stages maintain a distinct core microbiome consisting of Actinobacterial genera (Streptomyces, Nocardiodes) and the fungus Moniliella spathulata. Dormant (diapausing) larval bees hosted the most abundant and distinctive bacteria and fungi, attaining 33 and 52 times their initial copy number, respectively. We tested two adaptive hypotheses regarding microbial functions for diapausing bees. First, using isolated bacteria and fungi, we found that Streptomyces from brood cells inhibited the growth of multiple pathogenic filamentous fungi, suggesting a role in pathogen protection during overwintering, when bees face high pathogen pressure. Second, sugar alcohol composition changed in tandem with major changes in fungal abundance, suggesting links with bee cold tolerance or overwintering biology. We find that A. bomboides hosts a conserved core microbiome that may provide key fitness advantages through larval development and diapause, which raises the question of how this microbiome is maintained and faithfully transmitted between generations. Our results suggest that focus on microbiomes of mature or active insect developmental stages may overlook stage-specific symbionts and microbial fitness contributions during host dormancy.
Collapse
Affiliation(s)
- Shawn M Christensen
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| | - Sriram N Srinivas
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA 92521, United States
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Ithaca, NY 14853, United States
| | - Stephen L Buchmann
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ 85719, United States
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
6
|
Steffan SA, Dharampal PS, Kueneman JG, Keller A, Argueta-Guzmán MP, McFrederick QS, Buchmann SL, Vannette RL, Edlund AF, Mezera CC, Amon N, Danforth BN. Microbes, the 'silent third partners' of bee-angiosperm mutualisms. Trends Ecol Evol 2024; 39:65-77. [PMID: 37940503 DOI: 10.1016/j.tree.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 11/10/2023]
Abstract
While bee-angiosperm mutualisms are widely recognized as foundational partnerships that have shaped the diversity and structure of terrestrial ecosystems, these ancient mutualisms have been underpinned by 'silent third partners': microbes. Here, we propose reframing the canonical bee-angiosperm partnership as a three-way mutualism between bees, microbes, and angiosperms. This new conceptualization casts microbes as active symbionts, processing and protecting pollen-nectar provisions, consolidating nutrients for bee larvae, enhancing floral attractancy, facilitating plant fertilization, and defending bees and plants from pathogens. In exchange, bees and angiosperms provide their microbial associates with food, shelter, and transportation. Such microbial communities represent co-equal partners in tripartite mutualisms with bees and angiosperms, facilitating one of the most important ecological partnerships on land.
Collapse
Affiliation(s)
- Shawn A Steffan
- US Department of Agriculture, Agricultural Research Service, 1575 Linden Drive, Madison, WI 53706, USA; Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA.
| | - Prarthana S Dharampal
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA; Biology Department, McHenry County College, 8900 Northwest Hwy #14, Crystal Lake, IL 60012, USA
| | - Jordan G Kueneman
- Department of Entomology, Cornell University, Comstock Hall, 2126, Ithaca, NY 14853, USA
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Stephen L Buchmann
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Anna F Edlund
- Department of Biology, Bethany College, 31 E Campus Drive, Bethany, WV 26032, USA
| | - Celeste C Mezera
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | - Nolan Amon
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Comstock Hall, 2126, Ithaca, NY 14853, USA
| |
Collapse
|