1
|
Ding F, Ji S, Sa R, Nin C, Ma F, Yan H. Effects of water-saving irrigation on microbial community structures, assembly, and metabolic activities in alfalfa rhizosphere soils. Int Microbiol 2025:10.1007/s10123-025-00667-2. [PMID: 40343647 DOI: 10.1007/s10123-025-00667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 04/06/2025] [Accepted: 04/30/2025] [Indexed: 05/11/2025]
Abstract
In agricultural areas of arid Xinjiang, China, selecting appropriate irrigation strategies for farmland is essential. Increasing attention is being paid to the ecological effects of different irrigation methods on the soil environment. As a crucial component of soil quality, the microbial community is a key indicator of the impacts of irrigation on the soil environment. To investigate the effects of irrigation treatments on the properties of rhizosphere soil and the underlying microbial community characteristics, this study conducted an alfalfa field experiment applying three water-saving treatments (3750, 4500, and 5250 m3 hm-2) and regular irrigation (6750 m3 hm-2, CK). The results showed that the water-saving treatments increased the soil pH, salinity, available nitrogen, and phosphorus levels. The water-saving treatments decreased the richness and diversity of the bacterial community in the rhizosphere but increased those of the fungal community. The influence of stochastic processes on fungal and bacterial communities assembly under water-saving treatments was more noticeable than that under CK. Compared with CK, water-saving treatments reduced the complexity of microbial network and increased the potential negative interaction between bacteria and fungi. Functional prediction analysis showed that species specificity among treatments may result from a specific selection of rhizosphere functional requirements. This study reveals the effect of controlling irrigation quantity on protecting soil microbial diversity and function and improves the understanding of rhizosphere soil community response affected by different irrigation strategies. The results facilitate the development of effective and beneficial agricultural measures.
Collapse
Affiliation(s)
- Feng Ding
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
- Research Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Areas, Urumqi, 830091, Xinjiang, China
| | - Shun Ji
- Comprehensive Testing Ground, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China
| | - Renna Sa
- Research Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Areas, Urumqi, 830091, Xinjiang, China
| | - Chenbo Nin
- Comprehensive Testing Ground, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China
| | - Feng Ma
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| | - Haijun Yan
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
2
|
Yuan W, Qin Y, Zhang W, Zhou W, Feng G, Zhu H, Yao Q. Weather parameters and biotic factors synergistically shape the phyllosphere microbiome of pomelo ( Citrus maxima (Burm.) Merr.) across annual cycle. FRONTIERS IN PLANT SCIENCE 2025; 16:1532188. [PMID: 40247948 PMCID: PMC12003388 DOI: 10.3389/fpls.2025.1532188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/17/2025] [Indexed: 04/19/2025]
Abstract
Phyllosphere microbiome plays important roles in crop adaptation to the changing environments. Perennial woody crops undergo annual cycles with the changing weather parameters and the biological factors, which might shape the phyllosphere microbial community. In this study, we aimed to investigate the dynamics of phyllosphere microbiome of pomelo (Citrus maxima (Burm.) Merr.), an economically important horticultural crops worldwide, and to compare the respective contribution of the weather parameters and the biotic factors to the microbial community assembly, with special focus on the amino acids in leaves. Hi-Seq analysis revealed that both bacterial and fungal communities showed annual cycle dynamics, and the bacterial community in summer was much different from those in other seasons probably due to high temperature and precipitation. However, contribution of the biotic factors (e.g., leaf traits) (12%-29%) to microbial community assembly was higher than that of the weather parameters (4%-15%). Redundancy analysis indicated that the leaf amino acids significantly affected bacterial community while sugars significantly affected fungal community, highlighting the differential patterns of bacterial and fungal community as affected by the biotic factors. Finally, structure equation model showed that the weather parameters influenced microbial community colonizing pomelo leaves both in a direct way and in an indirect way via leaf traits (mainly amino acids). These results demonstrate the primary role of weather parameters and the key role of leaf amino acids in shaping phyllosphere microbiome.
Collapse
Affiliation(s)
- Weina Yuan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yongqiang Qin
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wei Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wenqian Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guangda Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qing Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Lu G, Feng Z, Xu Y, Guan F, Jin Y, Zhang G, Hu J, Yu T, Wang M, Liu M, Yang H, Li W, Liang Z. Phosphogypsum with Rice Cultivation Driven Saline-Alkali Soil Remediation Alters the Microbial Community Structure. PLANTS (BASEL, SWITZERLAND) 2024; 13:2818. [PMID: 39409688 PMCID: PMC11479165 DOI: 10.3390/plants13192818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024]
Abstract
The improvement of saline-alkali land plays a key role in ensuring food security and promoting agricultural development. Saline soils modifies the response of the soil microbial community, but research is still limited. The effects of applying phosphogypsum with rice cultivation (PRC) on soil physicochemical properties and bacterial community in soda saline-alkali paddy fields in Songnen Plain, China were studied. The results showed that the PRC significantly improved the physicochemical properties of soil, significantly reduced the salinity, increased the utilization efficiency of carbon, nitrogen, and phosphorus, and significantly increased the activities of urease and phosphatase. The activities of urease and phosphatase were significantly correlated with the contents of total organic carbon and total carbon. A redundancy analysis showed that pH, AP, ESP, HCO3-, and Na+ were dominant factors in determining the bacterial community structure. The results showed that PRC could improve soil quality and enhance the ecosystem functionality of soda saline-alkali paddy fields by increasing nutrient content, stimulating soil enzyme activity, and regulating bacterial community improvement. After many years of PRC, the soda-alkali soil paddy field still develops continuously and healthily, which will provide a new idea for sustainable land use management and agricultural development.
Collapse
Affiliation(s)
- Guanru Lu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonghui Feng
- College of Life Science, Baicheng Normal University, Baicheng 137000, China;
| | - Yang Xu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
| | - Fachun Guan
- Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Yangyang Jin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
| | - Guohui Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
| | - Jiafeng Hu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Tianhe Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Mingming Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Miao Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Haoyu Yang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Weiqiang Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Zhengwei Liang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| |
Collapse
|
4
|
Xia Y, Feng J, Zhang H, Xiong D, Kong L, Seviour R, Kong Y. Effects of soil pH on the growth, soil nutrient composition, and rhizosphere microbiome of Ageratina adenophora. PeerJ 2024; 12:e17231. [PMID: 38646477 PMCID: PMC11027909 DOI: 10.7717/peerj.17231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Ageratina adenophora is an invasive weed species found in many countries. Methods to control the spread of this weed have been largely unsuccessful. Soil pH is the most important soil factor affecting the availability of nutrients for plant and impacting its growth. Understanding the mechanisms of the influence of soil pH on the growth of A. adenophora may help to develop effective control measures. In this study, we artificially changed the soil pH in pot experiments for A. adenophora. We studied the effects of acidic (pH 5.5), weakly acidic (pH 6.5), neutral (pH 7.2), and alkaline (pH 9.0) soils on the growth, availability of soil nutrients, activity of antioxidant enzymes, levels of redox markers in the leaves, and the structure and diversity of the rhizosphere microbiome. Soil with a pH 7.2 had a higher (47.8%) below-ground height versus soils of pH 5.5 at day 10; plant had a higher (11.3%) above-ground height in pH 7.2 soils than pH 9.0 soils at day 90; no differences in the fresh and dry weights of its above- and belowground parts, plant heights, and root lengths were observed in plants growing in acid, alkaline, or neutral pH soil were observed at day 180. Correspondingly, the antioxidant enzymes SOD (superoxide dismutase), POD (peroxidase), CAT (catalase) and redox markers GSH (glutathione) and MDA (malondialdehyde) were measured in the leaves. Significant differences existed in the activities of CAT and the levels of GSH between those growing in acidic and alkaline soils and those in neutral pH soil at day 90; however, only lower (36.8%) CAT activities in those grown at pH 5.5 than those grown at pH 7.2 were found at day 180. Similarly, significant differences in available P (16.89 vs 3.04 mg Kg-1) and total K (3.67 vs 0.96 mg Kg-1), total P (0.37 vs 0.25 g Kg-1) and total N (0.45 vs 1.09 g Kg-1) concentrations were found between the rhizosphere soils of A. adenophora grown at pH 9.0 and 7.2 at day 90; no such differences were seen at day 180. High throughput analyses of the 16S rRNA and ITS fragments showed that the rhizosphere microbiome diversity and composition under different soil pH conditions changed over 180 days. The rhizosphere microbiomes differed in diversity, phylum, and generic composition and population interactions under acid and alkaline conditions versus those grown in neutral soils. Soil pH had a greater impact on the diversity and composition of the prokaryotic rhizosphere communities than those of the fungal communities. A. adenophora responded successfully to pH stress by changing the diversity and composition of the rhizosphere microbiome to maintain a balanced nutrient supply to support its normal growth. The unusual pH tolerance of A. adenophora may be one crucial reason for its successful invasion. Our results suggest that attempts use soil pH to control its invasion by changing the soil pH (for example, using lime) will fail.
Collapse
Affiliation(s)
- Yun Xia
- Yunnan Urban Agricultural Engineering & Technological Research Centre, Kunming University, Kunming, Yunnan Province, China
- School of Agriculture and Biotechnology, Kunming University, Kunming, Yunnan, China
| | - Junna Feng
- School of Agriculture and Biotechnology, Kunming University, Kunming, Yunnan, China
| | - Hongbo Zhang
- School of Agriculture and Biotechnology, Kunming University, Kunming, Yunnan, China
| | - Deyu Xiong
- School of Agriculture and Biotechnology, Kunming University, Kunming, Yunnan, China
| | - Lingdong Kong
- School of Agriculture and Biotechnology, Kunming University, Kunming, Yunnan, China
| | - Robert Seviour
- Microbiology Department, La Trobe University, Melbourne, Vic, Australia
| | - Yunhong Kong
- Kunming Key Laboratory of Hydro-ecology Restoration of Dianchi Lake, Kunming University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Feng Z, Xie X, Wu P, Chen M, Qin Y, Zhou Y, Zhu H, Yao Q. Phenylalanine-mediated changes in the soil bacterial community promote nitrogen cycling and plant growth. Microbiol Res 2023; 275:127447. [PMID: 37441843 DOI: 10.1016/j.micres.2023.127447] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Soil amino acids (AAs) are the most active components of soil N, which can be mineralized or absorbed by bacteria as N and C sources. We hypothesized that exogenous AAs could regulate the bacterial community and affect soil N cycling, and the effect sizes could vary depending on individual AAs. Here, we applied feather (keratin)-based compost rich in AAs to Poncirus trifoliata (L.) to evaluate the regulation of bacterial community by AAs; furthermore, we applied six individual AAs to test their effects. The compost significantly increased soil hydrolysable AA content, ammonia monooxygenase gene abundance, and plant growth and changed bacterial community structure. Redundancy analysis revealed that the effects of AAs on the bacterial community composition were greater than those of soil chemical properties, and phenylalanine (Phe) was the most effective among thirteen individual AAs. When applied individually, Phe caused the greatest increase in N cycling-related enzyme activity and plant growth and most significantly altered the bacterial community structure among the six exogenous AAs. Notably, Phe significantly increased the relative abundances of Burkholderia-Caballeronia-Paraburkholderia, Azospirillum, Cupriavidus, and Achromobacter, whose abundances were significantly positively correlated with plant biomass, and significantly reduced the relative abundances of Arachidicoccus, Pseudopedobacter, Sphingobacterium, and Paenibacillus, whose abundances were significantly negatively correlated with plant biomass. We demonstrate that soil AAs strongly shape the bacterial community. Particularly, Phe enhances N cycling and plant growth by increasing the potentially beneficial bacterial taxa and inhibiting the potentially harmful bacterial taxa, which needs further validation.
Collapse
Affiliation(s)
- Zengwei Feng
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaolin Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong BoWoTe Biotechnology Co. Ltd., Shaoguan 512026, China
| | - Peidong Wu
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China
| | - Meng Chen
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China; Guangdong BoWoTe Biotechnology Co. Ltd., Shaoguan 512026, China
| | - Yongqiang Qin
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China
| | - Yang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Qing Yao
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|