1
|
Manna B, Zhou X, Singhal N. ROS-induced stress promotes enrichment and emergence of antibiotic resistance in conventional activated sludge processes. WATER RESEARCH 2025; 277:123366. [PMID: 40020351 DOI: 10.1016/j.watres.2025.123366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Since the Great Oxidation Event 2.4 billion years ago, microorganisms have evolved sophisticated responses to oxidative stress. These ancient adaptations remain relevant in modern engineered systems, particularly in conventional activated sludge (CAS) processes, which serve as significant reservoirs of antibiotic resistance genes (ARGs). While ROS-induced stress responses are known to promote ARG enrichment/emergence in pure cultures, their impact on ARG dynamics in wastewater treatment processes remains unexplored. Shotgun-metagenomics analysis of two hospital wastewater treatment plants showed that only 35-53 % of hospital effluent resistome was retained in final effluent. Despite this reduction, approximately 29-36 % of ARGs in CAS showed higher abundance than upstream stages, of which 20-22 % emerged de novo. Beta-lactamases and efflux pumps constituted nearly 47-53 % of these enriched ARGs. These ARGs exhibited significant correlations (p < 0.05) with ROS stress response genes (oxyR, soxR, sodAB, katG and ahpCF). The CAS resistome determined 58-75 % of the effluent ARG profiles, indicating treatment processes outweigh influent composition in shaping final resistome. Proof-of-concept batch reactor experiments confirmed increased ROS and ARG levels under high dissolved oxygen (8 mg/L) compared to low oxygen (2 mg/L) concentrations. Untargeted metaproteomics revealed higher expression of resistant proteins (e.g., OXA-184, OXA-576, PME-1, RpoB2, Tet(W/32/O)) under elevated ROS levels. Our findings demonstrate that CAS processes actively shape effluent resistome through ROS-mediated selection, indicating that treatment processes, rather than initial wastewater composition, determine final ARG profiles. This study indicates that the emergence of ARGs needs to be considered as an integral aspect of wastewater treatment design and operation to prevent antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Bharat Manna
- Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142, New Zealand; Water Research Centre, University of Auckland, Auckland 1142, New Zealand
| | - Xueyang Zhou
- Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142, New Zealand; Water Research Centre, University of Auckland, Auckland 1142, New Zealand
| | - Naresh Singhal
- Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142, New Zealand; Water Research Centre, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
2
|
Hotor P, Kotey FCN, Donkor ES. Antibiotic resistance in hospital wastewater in West Africa: a systematic review and meta-analysis. BMC Public Health 2025; 25:1364. [PMID: 40217451 PMCID: PMC11987346 DOI: 10.1186/s12889-025-22513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The occurrence of antibiotic-resistant bacteria (ARB) has become a global menace and therefore increases morbidity, mortality and healthcare costs. Globally, hospital wastewater (HWW) has been identified as a significant source of antibiotic-resistant elements. OBJECTIVES This review aims to systematically review and to perform meta-analyses from evidence on antibiotic resistance studies in HWW in West Africa. METHODS The review was conducted in compliance with PRISMA and included studies published between 1990 and 2024 in West Africa from the Scopus, PubMed, and Web of Science databases. Eligible studies that characterized resistant bacteria, genes, or antibiotic residues in HWW were included. Meta-analyses for resistant bacteria and genes as well risk of bias using the Newcastle-Ottawa scale were conducted. RESULTS Out of 23 studies reviewed, resistant bacteria were reported in 39% (E. coli), 26% (K. pneumoniae), and 17% (P. aeruginosa), while 17 studies reported ARGs, with blaTEM (29%), blaOXA- 48 (18%), blaSHV (18%), and mecA (18%) being the most common. Only 4% and 9% of studies focused on toxin genes and antibiotic residues, respectively. Meta-analysis showed pooled prevalence rates for resistant bacteria: E. coli 42.6% (95% CI: 26.7%-60.3%) and K. pneumoniae 32.1% (95% Cl: 28.8%- 36.5%), and ARGs: blaTEM 76.0% (95% CI = 64.6%-84.6%) and blaSHV 59.3% (95% CI = 19.5%-89.8%). CONCLUSION This systematic review highlights significant findings of high levels of ARGs and ARBs of public health concern in HWW in West Africa. This highlights the need to improve upon the monitoring of antibiotic resistance and treatment of HWW in West Africa.
Collapse
Affiliation(s)
- Prince Hotor
- Department of Medical Microbiology, University of Ghana Medical School, 00233, Accra, Ghana.
| | - Fleischer C N Kotey
- Department of Medical Microbiology, University of Ghana Medical School, 00233, Accra, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, 00233, Accra, Ghana.
| |
Collapse
|
3
|
Zhang S, Shu Y, Yang Z, Zhong Z, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huang J, Ou X, Sun D, Tian B, Wu Z, He Y, Cheng A. Decoding the enigma: unveiling the transmission characteristics of waterfowl-associated bla NDM-5-positive Escherichia coli in select regions of China. Front Microbiol 2024; 15:1501594. [PMID: 39717269 PMCID: PMC11663885 DOI: 10.3389/fmicb.2024.1501594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Escherichia coli (E. coli) serves as a critical indicator microorganism for assessing the prevalence and dissemination of antibiotic resistance, notably harboring various antibiotic-resistant genes (ARGs). Among these, the emergence of the bla NDM gene represents a significant threat to public health, especially since carbapenem antibiotics are vital for treating severe infections caused by Gram-negative bacteria. This study aimed to characterize the antibiotic resistance features of bla NDM-5-positive E. coli strains isolated from waterfowl in several regions of China and elucidate the dissemination patterns of the bla NDM-5 gene. We successfully isolated 103 bla NDM-5-positive E. coli strains from 431 intestinal fecal samples obtained from waterfowl across five provincial-level units in China, with all strains exhibiting multidrug resistance (MDR). Notably, the bla NDM-5 gene was identified on plasmids, which facilitate efficient and stable horizontal gene transfer (HGT). Our adaptability assays indicated that while the bla NDM-5-positive plasmid imposed a fitness cost on the host bacteria, the NDM-5 protein was successfully induced and purified, exhibiting significant enzymatic activity. One strain, designated DY51, exhibited a minimum inhibitory concentration (MIC) for imipenem of 4 mg/L, which escalated to 512 mg/L following exposure to increasing imipenem doses. This altered strain demonstrated stable resistance to imipenem alongside improved adaptability, correlating with elevated relative expression levels of the bla NDM-5 and overexpression of efflux pumps. Collectively, this study highlights the horizontal dissemination of the bla NDM-5 plasmid among E. coli strains, confirms the associated fitness costs, and provides insights into the mechanisms underlying the stable increase in antibiotic resistance to imipenem. These findings offer a theoretical framework for understanding the dissemination dynamics of bla NDM-5 in E. coli, which is essential for developing effective strategies to combat carbapenem antibiotic resistance.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Yanxi Shu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhechen Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Zhen Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Yu He
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| |
Collapse
|
4
|
Siri Y, Sresung M, Paisantham P, Mongkolsuk S, Sirikanchana K, Honda R, Precha N, Makkaew P. Antibiotic resistance genes and crAssphage in hospital wastewater and a canal receiving the treatment effluent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124771. [PMID: 39168435 DOI: 10.1016/j.envpol.2024.124771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/26/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Hospital wastewater is a major hotspot for the spread of antimicrobial resistance (AMR) in aquatic ecosystems. This study aimed to investigate the prevalence of antibiotic resistance genes (ARGs) and their correlation with crAssphage in a hospital wastewater treatment plant (HWWTP) and a receiving canal. Water samples were analyzed for 94 ARGs and crAssphage relative to the 16S rRNA using high-throughput quantitative polymerase chain reaction (HT-qPCR). Subsequently, 7 ARGs and crAssphage were selected and quantified using qPCR. The results showed that the detected genes ranged from 79 to 93 out of 95 genes. The raw wastewater (WW) samples had the highest gene diversity compared to the upstream canal, which had less diversity than downstream samples, as determined by HT-qPCR. The blaGES was the most abundant in WW samples, while qacEΔ1, merA, IS6100, tnpA, and IS26 showed high prevalence throughout the treatment processes. The concentrations of intI1, sul1, blaTEM,blaNDM,blaVIM,tetQ, mcr-1, crAssphage, and 16S rRNA, measured using qPCR, were the highest in WW and significantly reduced in treated water samples. Although some water quality parameters, such as total suspended solids and dissolved oxygen, did not significantly differ before and after treatment, removal efficiency ranged from 0.60 to 3.23 log reduction values (LRV). The highest LRV was observed for the tetQ, whereas the mcr-1 had the lowest LRV. Strong positive correlations among the absolute concentrations of ARGs and crAssphage were observed (Spearman's rho = 0.6-1.0), and biochemical oxygen demand correlated with blaTEM and blaVIM (Spearman's rho = 0.6). These results indicate that crAssphage and water quality could reflect the distribution of other ARGs throughout the HWWTP. Further studies are needed to underscore the importance of monitoring ARGs and genetic markers such as crAssphage in HWWTPs and their receiving waters to enhance our understanding of ARG distribution.
Collapse
Affiliation(s)
- Yadpiroon Siri
- Environmental, Safety Technology and Health Program, School of Public Health, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | - Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Phongsawat Paisantham
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, 80160, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Prasert Makkaew
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, 80160, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
5
|
Thanh PN, Xuan PH, Van CD, Long HP, Thanh HH, Do HT. Antibiotic resistance genes, colistin-resistant Escherichia coli, and physicochemicals in health care wastewater in Vinh Long General Hospital, Vietnam. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1187. [PMID: 39528737 DOI: 10.1007/s10661-024-13345-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
This study collected ten treated wastewater samples from Vinh Long General Hospital to determine their physicochemical characteristics and antibiotic properties. All treated wastewater samples collected during the monitoring periods complied with national regulations. In addition, these samples did not contain bacteria such as Salmonella, Shigella, and Vibrio cholerae. The investigation yielded a total of 25 Escherichia coli isolates. The E. coli isolates exhibied highest antibiotic resistance rate to ampicillin (100%), followed by ciprofloxacin, amoxicillin/clavulanic acid, and cefazolin (96%, 92%, and 92%, respectively). The resistance rate to fosfomycin was 88%, whereas 80% of the isolates were resistant to sulfamethoxazole-trimethoprim. The resistance rate to gentamicin was 72%, whereas that to imipenem and tetracycline was 52%. In addition, 44% isolates were resistant to chloramphenicol, and 32% of isolates were colistin-resistant. Among analyzed isolates, three were resistant to 10 of 11 tested antibiotics but only displayed intermediate resistance to imipenems (carbapenems). Surprisingly, 23 out of 25 isolates showed a positive ESBL phenotype. Eleven of them had both the blaTEM and blaCTX-M-1 group structural genes, while twelve only had the blaCTX-M-1 group gene. Furthermore, none of the isolated E. coli isolates exhibited the blaSHV gene. The minimum inhibitory concentration (MIC) of colistin exceeded 4 μg/mL in 8 out of 25 (32%) isolates. Seven of eight isolates (87.5%) carried the mcr-1 gene, while one (12.5%) carried the mcr-8 gene. None of the other mcr (mcr-2 to mcr-9) genes were found.
Collapse
Affiliation(s)
- Phong Ngo Thanh
- Institute of Food and Biotechnology, Can Tho University, Can Tho, Vietnam.
- Institute of Public Health in Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| | - Phong Huynh Xuan
- Institute of Food and Biotechnology, Can Tho University, Can Tho, Vietnam
| | - Chinh Dang Van
- Institute of Public Health in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Ho Phan Long
- Institute of Public Health in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Hung Tran Do
- Can Tho University Medicine and Pharmacy, Can Tho, Vietnam
| |
Collapse
|
6
|
Conte D, Mesa D, Krul D, Bail L, Ito CAS, Palmeiro JK, Dalla-Costa LM. Comparative genomics of IncQ1 plasmids carrying bla GES variants from clinical and environmental sources in Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105644. [PMID: 39038632 DOI: 10.1016/j.meegid.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
IncQ-type plasmids have become important vectors in the dissemination of blaGES among different bacterial genera and species from different environments around the world, and studies estimating the occurrence of Guiana extended-spectrum (GES)-type β-lactamases are gaining prominence. We analyzed the genetic aspects of two IncQ1 plasmids harboring different blaGES variants from human and environmental sources. The blaGES variants were identified using polymerase chain reaction (PCR) in Aeromonas veronii isolated from hospital effluent and Klebsiella variicola isolated from a rectal swab of a patient admitted to the cardiovascular intensive care unit in a different hospital. Antimicrobial-susceptibility testing and transformation experiments were performed for phenotypic analysis. Whole-genome sequencing was performed using Illumina and Oxford Nanopore platforms. The comparative analysis of plasmids was performed using BLASTn, and the IncQ1 plasmids showed a high identity and similar size. A. veronii harbored blaGES-7 in a class 1 integron (In2061), recently described by our group, and K. variicola carried blaGES-5 in the known class 1 integron. Both integrons showed a fused gene cassette that encodes resistance to aminoglycosides and fluoroquinolones, with an IS6100 truncating the 3'-conserved segment. The fused genes are transcribed together, although the attC site is disrupted. These gene cassettes can no longer be mobilized. This study revealed a mobilome that may contribute to the dissemination of GES-type β-lactamases in Brazil. Class 1 integrons are hot spots for bacterial evolution, and their insertion into small IncQ-like plasmids displayed successful recombination, allowing the spread of blaGES variants in various environments. Therefore, they can become prevalent across clinically relevant pathogens.
Collapse
Affiliation(s)
- Danieli Conte
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil.
| | - Dany Mesa
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Damaris Krul
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Larissa Bail
- Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | | | - Jussara Kasuko Palmeiro
- Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; Laboratório de Microbiologia Molecular Aplicada, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Libera Maria Dalla-Costa
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| |
Collapse
|
7
|
Shaha CK, Mahmud MAA, Saha S, Karmaker S, Saha TK. Efficient removal of sparfloxacin antibiotic from water using sulfonated graphene oxide: Kinetics, thermodynamics, and environmental implications. Heliyon 2024; 10:e33644. [PMID: 39040378 PMCID: PMC11261116 DOI: 10.1016/j.heliyon.2024.e33644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Pharmaceutical contamination poses a significant threat to global health. Due to their high solubility in water, antibiotics are difficult to remove. This study produced and used sulfonated graphene oxide (SGO) to adsorb sparfloxacin from aquatic environments. UV-Visible, Fourier transform infrared (FTIR), X-ray diffraction (XRD), XPS, SEM, TEM, EDX, particle size, Thermogravimetric analysis (TGA), and acid-base titration were used to characterize synthesized SGO particles. The BET technique determined SGO's surface area (32.25 m2/g). The calculated pHPZC of SGO was 2.5. Sparfloxacin adsorption onto SGO was analyzed using adsorption duration, medium pH, adsorbent dosages, antibiotic concentration, cations, and solution temperature. The pseudo-second-order kinetic model better described experimental kinetic data than the pseudo-first-order and Elovich models. Equilibrium isotherm data supported the Langmuir model, revealing a peak absorption capacity of 1428.57 μmol/g at 25 °C. The kinetic and isotherm models' applicability was assessed using error analysis. A thermodynamic analysis revealed an endothermic, spontaneous adsorption process with a change in entropy (ΔS) of 114.15 J/mol K and enthalpy (ΔH) of 8.44 kJ/mol. A regeneration analysis showed that SGO adsorption efficiency topped 86.4 % after five cycles.
Collapse
Affiliation(s)
- Chironjit Kumar Shaha
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
- Veterinary Drug Residue Analysis Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment (AERE), Gonokbari, Savar, Dhaka 1349, Bangladesh
| | | | - Sudipta Saha
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Subarna Karmaker
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Tapan Kumar Saha
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
8
|
Yu T, Huang J, Huang X, Hao J, Zhang P, Guo T, Bao G, Li G. Sub-MIC antibiotics increased the fitness cost of CRISPR-Cas in Acinetobacter baumannii. Front Microbiol 2024; 15:1381749. [PMID: 39011146 PMCID: PMC11246858 DOI: 10.3389/fmicb.2024.1381749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction The escalating prevalence of bacterial resistance, particularly multidrug-resistant bacteria like Acinetobacter baumannii, has become a significant global public health concern. The CRISPR-Cas system, a crucial defense mechanism in bacteria against foreign genetic elements, provides a competitive advantage. Type I-Fb and Type I-Fa are two subtypes of CRISPR-Cas systems that were found in A. baumannii, and the I-Fb CRISPR-Cas system regulates antibiotic resistance in A. baumannii. However, it is noteworthy that a majority of clinical isolates of A. baumannii lack or have incomplete CRISPR-Cas systems and most of them are multidrug-resistant. In light of this, our study aimed to examine the impact of antibiotic pressure on the fitness cost of the I-Fb CRISPR-Cas system in A. baumannii. Methods and Results In the study, we conducted in vitro competition experiments to investigate the influence of sub-minimum inhibitory concentration (sub-MIC) on the CRISPR-Cas systems' fitness cost in A. baumannii. We found that the fitness cost of the CRISPR-Cas system was increased under sub-MIC conditions. The expression of CRISPR-Cas-related genes was decreased, while the conjugation frequency was increased in AB43 under sub-MIC conditions. Through metabolomic analysis, we identified that sub-MIC conditions primarily affected energy metabolism pathways. In particular, we observed increased carbon metabolism, nitrogen metabolism, and intracellular ATP. Notably, the CRISPR-Cas system demonstrated resistance to the efflux pump-mediated resistance. Furthermore, the expression of efflux pump-related genes was increased under sub-MIC conditions. Conclusion Our findings suggest that the I-Fb CRISPR-Cas system confers a significant competitive advantage in A. baumanni. However, under sub-MIC conditions, its function and the ability to inhibit the energy required for efflux pumps are reduced, resulting in an increased fitness cost and loss of competitive advantage.
Collapse
Affiliation(s)
- Ting Yu
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Department of Laboratory Medicine, Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Jiayuan Huang
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Xinyue Huang
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Jingchen Hao
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Pengyu Zhang
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Tingting Guo
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Department of Laboratory Medicine, Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Guangyu Bao
- Department of Laboratory Medicine, Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Guocai Li
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Department of Laboratory Medicine, Affiliated Hospital, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College/Guangling College, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Nithiya P, Alagarsamy G, Sathish PB, Rajarathnam D, Li X, Jeyaraj S, Satheesh M, Selvakumar R. Impact of effluent parameters and vancomycin concentration on vancomycin resistant Escherichia coli and its host specific bacteriophage lytic activity in hospital effluent. ENVIRONMENTAL RESEARCH 2024; 247:118334. [PMID: 38316381 DOI: 10.1016/j.envres.2024.118334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
Vancomycin resistance in bacteria has been classified under high priority category by World Health Organization (WHO) and its presence in hospital effluent is reported to be increasing owing to excess antibiotics use. Among various strategies, bacteriophage has been recently considered as a promising biological agent for combating such antimicrobial resistant bacteria (ARB). However, the influence of effluent's properties on phage-ARB interaction in actual hospital effluent is not completely understood. The present works intends to study this influence of hospital effluent and its parameters on the interaction between vancomycin resistant E. coli (VRE) and its host specific bacteriophage. The isolated VRE was identified by 16S rRNA sequencing, matrix-assisted laser desorption/ionization-time of flight (MALDI - TOF) and whole genome sequencing. The infectivity of phage onto host bacteria was investigated using electron microscopic techniques, dynamic light scattering (DLS), spectrofluorophotometer and confirmed using double agar overlay method. The monovalency and polyvalency of isolated phage against various bacterial species were determined. The phage morphology was identical to T7 phage belonging to Podoviridae. The phage lysis was maximum at pH 7 (90.2%), 37 °C (91.6%) and vancomycin concentration of 50 μg/mL in both synthetic media (89.13%) and effluent (100%). At a maximum vancomycin concentration of 100 μg/mL, decrease in Ca, K, Mg and P (up to 19.70, 14.18, 28, and 15.82% respectively) concentration in effluent was observed due to phage infectivity when compared to control. The whole genome sequencing was performed and the bioinformatics analysis presented the role of mdfA gene encoding the efflux pump in causing vancomycin resistance in E. coli. It also depicted the presence of multiple genes responsible for mercury, cobalt, zinc and cadmium resistance in VRE. These results clearly indicate that bacteriophage mediated combating of VRE is possible in actual hospital effluent and can be used as one of the treatment methods.
Collapse
Affiliation(s)
- P Nithiya
- Department of Nanobiotechnology, PSG Institute of Advanced Studies, Coimbatore, 641004, India
| | - G Alagarsamy
- Department of Nanobiotechnology, PSG Institute of Advanced Studies, Coimbatore, 641004, India
| | - P B Sathish
- Department of Nanobiotechnology, PSG Institute of Advanced Studies, Coimbatore, 641004, India
| | - D Rajarathnam
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sankarganesh Jeyaraj
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, 641004, India; PSG Center for Genetics and Molecular Biology, Off Avinashi Road, Coimbatore, 641004, India
| | - Manjima Satheesh
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, 641004, India; PSG Center for Genetics and Molecular Biology, Off Avinashi Road, Coimbatore, 641004, India
| | - R Selvakumar
- Department of Nanobiotechnology, PSG Institute of Advanced Studies, Coimbatore, 641004, India.
| |
Collapse
|
10
|
Owojori GO, Lateef SA, Ana GREE. Effectiveness of wastewater treatment plant at the removal of nutrients, pathogenic bacteria, and antibiotic-resistant bacteria in wastewater from hospital source. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10785-10801. [PMID: 38212560 DOI: 10.1007/s11356-024-31829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
This study is aimed at assessing the effectiveness of hospital's wastewater treatment plant (WWTP) in removing nutrients, pathogenic bacteria, and addressing antibiotic resistance using a case study of a tertiary hospital in Ibadan, Nigeria. During the dry and wet seasons in the month of July and December, respectively, samples were collected, and analyzed using standard guidelines to examine significant physicochemical parameters of the WTTP; to evaluate the removal efficiency of biological oxygen demand (BOD) and chemical oxygen demand (COD), and to examine the prevalence of pathogenic and antibiotic-resistant bacteria. The results of this study showed that during the dry season, certain parameters exceeded acceptable limits, including temperature, total suspended solids (TSS), total dissolved solids (TDS), phosphate, and nitrate. Although there were reductions in BOD (1555 mg/L to 482 mg/L) and COD levels (3160 mg/L to 972 mg/L), they remained above acceptable limits by World Health Organization. In the wet season, the level of COD (20 mg/L) in the effluent was within acceptable limit, while the BOD (160 mg/L) was above the acceptable limit. The WWTP effectively removed nutrients and reduced the microbial load, as evident from the absence of fecal coliforms in the effluent in both seasons. In respect to BOD removal efficiency, the level of purification of wastewater by the WWTP was 69% during the dry season, while the removal efficiency of COD was 83.54% which showed the efficiency of the WWTP at the removal of COD. However, antibiotic resistance was still present. The study concludes that while the WWTP effectively addressed nutrients and microbial load, additional measures such as tertiary treatment methods like chlorination and UV radiation are necessary to tackle antibiotic resistance. This is crucial to prevent the release of antibiotic-resistant bacteria into the environment, safeguarding human health, animals, plants, and overall environmental well-being.
Collapse
Affiliation(s)
- Grace O Owojori
- Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Suraju A Lateef
- Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Godson R E E Ana
- Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
11
|
Haberl Meglič S, Slokar D, Miklavčič D. Inactivation of antibiotic-resistant bacteria Escherichia coli by electroporation. Front Microbiol 2024; 15:1347000. [PMID: 38333581 PMCID: PMC10850576 DOI: 10.3389/fmicb.2024.1347000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction In modern times, bacterial infections have become a growing problem in the medical community due to the emergence of antibiotic-resistant bacteria. In fact, the overuse and improper disposal of antibiotics have led to bacterial resistance and the presence of such bacteria in wastewater. Therefore, it is critical to develop effective strategies for dealing with antibiotic-resistant bacteria in wastewater. Electroporation has been found to be one of the most promising complementary techniques for bacterial inactivation because it is effective against a wide range of bacteria, is non-chemical and is highly optimizable. Many studies have demonstrated electroporation-assisted inactivation of bacteria, but rarely have clinical antibiotics or bacteria resistant to these antibiotics been used in the study. Therefore, the motivation for our study was to use a treatment regimen that combines antibiotics and electroporation to inactivate antibiotic-resistant bacteria. Methods We separately combined two antibiotics (tetracycline and chloramphenicol) to which the bacteria are resistant (with a different resistance mode) and electric pulses. We used three different concentrations of antibiotics (40, 80 and 150 µg/ml for tetracycline and 100, 500 and 2000 µg/ml for chloramphenicol, respectively) and four different electric field strengths (5, 10, 15 and 20 kV/cm) for electroporation. Results and discussion Our results show that electroporation effectively enhances the effect of antibiotics and inactivates antibiotic-resistant bacteria. The inactivation rate for tetracycline or chloramphenicol was found to be different and to increase with the strength of the pulsed electric field and/or the concentration of the antibiotic. In addition, we show that electroporation has a longer lasting effect (up to 24 hours), making bacteria vulnerable for a considerable time. The present work provides new insights into the use of electroporation to inactivate antibiotic-resistant bacteria in the aquatic environment.
Collapse
Affiliation(s)
- Saša Haberl Meglič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Dejan Slokar
- Centre of Excellence for Biosensors, Instrumentation and Process Control, Ajdovščina, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|