1
|
Zhou T, Zhang Y, Li Z, Lu C, Zhao H. Research progress of traditional Chinese medicine on the treatment of diarrhea by regulating intestinal microbiota and its metabolites based on renal-intestinal axis. Front Cell Infect Microbiol 2024; 14:1483550. [PMID: 39397865 PMCID: PMC11466940 DOI: 10.3389/fcimb.2024.1483550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Intestinal microbiota and its metabolites are involved in many physiological processes of the human body and play a vital role in maintaining human health. The occurrence of kidney disease can cause intestinal microbiota imbalance, resulting in diarrhea. The change of intestinal microbiota and its metabolites content can aggravate renal function injury, which has a bidirectional regulating effect. The theory of renal-intestinal axis further clarified that the impaired renal function is related to the imbalance of intestinal microorganisms, and the impaired intestinal barrier is related to the accumulation of toxin products. Because of its unique therapeutic advantages, Traditional Chinese Medicine can treat diarrhea by enhancing the growth of beneficial bacteria, inhibiting pathogenic bacteria and immune regulation, and slow down the continuous deterioration of kidney disease. This paper focuses on the relationship between intestinal microbiota and its metabolites and diarrhea, the influence of Traditional Chinese Medicine on intestinal microbiota in the treatment of diarrhea, and the role of intestinal microbiota and its metabolites in the renal-intestinal axis. It provides a theoretical basis for Traditional Chinese Medicine to regulate intestinal microbiota and its metabolites based on the renal-intestinal axis theory to treat nephrology-induced diarrhea, and also provides a new idea and method for Traitional Chinese Medicine to treat nephrology-induced diarrhea.
Collapse
Affiliation(s)
- Tong Zhou
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yifan Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Zhaoyuan Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Chunfeng Lu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- School of Medical, Huzhou University, Huzhou, Zhejiang, China
| | - Hong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
2
|
Xie S, Deng N, Fang L, Shen J, Tan Z, Cai Y. TMAO is involved in kidney-yang deficiency syndrome diarrhea by mediating the "gut-kidney axis". Heliyon 2024; 10:e35461. [PMID: 39170478 PMCID: PMC11336722 DOI: 10.1016/j.heliyon.2024.e35461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Trimethylamine-N-oxide (TMAO) is a harmful metabolite dependent on the intestinal microbiota and excreted through the kidneys. According to numerous investigations, rich circulation concentrations of TMAO have been linked to kidney and gastrointestinal disorders. Through the "gut-kidney axis" mediated by TMAO, this research attempted to clarify the microbiological causes of kidney-yang deficiency syndrome diarrhea. METHODS Adenine and Folium Sennae were used to create a mouse model of kidney-yang deficiency syndrome diarrhea. 16S rRNA sequencing was used to identify the traits of the intestinal mucosal microbiota. ELISA was used to assess TMAO, transforming growth factor-β1 (TGF-β1), interleukin-1β (IL-1β), and NOD-like receptor thermal protein domain associated protein 3 (NLRP3). Kidney tissue fibrosis was evaluated using Masson's trichrome staining, and immunohistochemical labeling was used to investigate the protein expression of occludin and Zonula Occludens-1(ZO-1) in small intestine tissue. Microbial activity was determined by using fluorescein diacetate (FDA) hydrolysis spectrophotometry. RESULTS TMAO showed a positive correlation with NLRP3, IL-1β and TGF-β1, all of which exhibited substantial increases (P < 0.05). Significant renal fibrosis and decreased ZO-1 and occludin expression in small intestine tissues were detected in the model group. The sequencing results revealed alterations in both α and β diversities of small intestinal mucosal microbiota. Elevated TMAO concentrations were potentially associated with increasing Firmicutes/Bacteroidota (F/B) ratios, Streptococcus, Pseudomonas and unclassified Clostridia UCG 014, but with decreasing Rothia and RB41 abundances. CONCLUSION This study establishes a link between intestinal microbiota dysbiosis and elevated TMAO concentrations. TMAO can activate inflammatory responses and cytokines, contributing to kidney-yang deficiency syndrome diarrhea via the "gut-kidney axis". Moreover, TMAO may coincide with disruptions in the intestinal barrier and renal fibrosis. Dysfunction of the "gut-kidney axis" further elevates TMAO levels, perpetuating a vicious cycle.
Collapse
Affiliation(s)
- Shiqin Xie
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| | - Na Deng
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| | - Leyao Fang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| | - Junxi Shen
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| | - Zhoujin Tan
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| | - Ying Cai
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| |
Collapse
|
3
|
Xie S, Fang L, Deng N, Shen J, Tan Z, Peng X. Targeting the Gut-Kidney Axis in Diarrhea with Kidney-Yang Deficiency Syndrome: The Role of Sishen Pills in Regulating TMAO-Mediated Inflammatory Response. Med Sci Monit 2024; 30:e944185. [PMID: 38898640 PMCID: PMC11305074 DOI: 10.12659/msm.944185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Sishen Pills (SSPs) are commonly used to treat diarrhea with kidney-yang deficiency syndrome. Trimethylamine-N-oxide (TMAO) is produced through the metabolism of gut microbiota and can participate in diarrhea in kidney-yang deficiency syndrome by mediating the "gut-kidney axis" to transmit inflammatory factors. This study combined network pharmacology with animal experiments to explore whether SSPs can treat diarrhea with kidney-yang deficiency syndrome by affecting the interaction between TMAO and gut microbiota. MATERIAL AND METHODS A mouse model of diarrhea with kidney-yang deficiency syndrome was constructed by using adenine and Folium sennae decoction, and SSP decoction was used for treatment. This study utilized network pharmacology to predict the potential mechanisms of SSPs in treating diarrhea with kidney-yang deficiency syndrome. 16S rRNA high-throughput sequencing was used to analyze gut mucosal microbial characteristics. ELISA was used to measure TMAO, NOD-like receptor thermal protein domain associated protein 3 (NLRP3), interleukin-1ß (IL-1ß), and transforming growth factor-ß1 (TGF-ß1) levels. We performed Masson and immunohistochemical (Occludin, ZO-1) staining of kidney and small intestinal tissues. The fluorescein diacetate (FDA) hydrolysis spectrophotometric method was used to assess the microbial activity in contents of the small intestine. RESULTS Network pharmacology analysis revealed that SSPs can modulate 108 target points involved in the development of diarrhea, including IL-1ß and TNF. The experimental results demonstrated that SSP decoction significantly improved the general behavioral profiles of the mice, and also reduced TMAO, NLRP3, IL-1ß, and TGF-ß1 levels (P<0.05). Correlation analysis revealed significant positive correlations between TMAO concentrations and NLRP3, IL-1ß and TGF-ß1 levels (P<0.05). Pathological analysis revealed improvements in renal fibrosis and increased expression of the Occludin and ZO-1 proteins in intestinal tissue. In the SSP group, there was a significant increase in microbial activity (P<0.001). According to the sequencing results, the characteristic bacteria of the SSP and NR groups included Succinatimonas hippei, uncultured Solirubrobacter sp., and Clostridium tyrobutyricum. Furthermore, TMAO, NLRP3, IL-1ß, and TGF-ß1 were significantly positively correlated (P<0.05) with Succinatimonas hippei and Clostridium tyrobutyricum. By modulating Firmicutes, Succinatimonas hippei, and Clostridium tyrobutyricum, SSP decoction lowers TMAO levels to alleviate diarrhea with kidney-yang deficiency syndrome. CONCLUSIONS TMAO likely plays a significant role in the "gut-kidney axis" of diarrhea with kidney-yang deficiency syndrome. By adjusting gut microbiota to reduce the inflammatory response that is transmitted through the "gut-kidney axis" as a result of elevated TMAO levels, SSP decoction can alleviate diarrhea with kidney-yang deficiency syndrome.
Collapse
Affiliation(s)
- Shiqin Xie
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Leyao Fang
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Na Deng
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Junxi Shen
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Zhoujin Tan
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Xinxin Peng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| |
Collapse
|
4
|
Tian Y, Fu M, Su J, Yan M, Yu J, Wang C, Niu Z, Du Y, Hu X, Zheng J, Tao B, Gao Z, Chen J, Chen S, Lv G. Gut microbiota dysbiosis and intestinal barrier impairment in diarrhea caused by cold drink and high-fat diet. Toxicology 2024; 502:153728. [PMID: 38216112 DOI: 10.1016/j.tox.2024.153728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
Cold drink and high-fat diet (CDHFD) are common diet patterns. However, the potential risks remain unclear. We investigated the effects of CDHFD in adult mice and explored the mechanisms of action. Twenty adult male mice were randomly divided into control and model groups, and the control group was fed a normal diet, whereas the model group was fed CDHFD for 28 days. We found that mice in the model group developed diarrhea symptoms accompanied by fatigue and weakness. Analysis of the intestinal flora revealed that the model group had a lower diversity and richness of microorganism species in the gut than the control group. Furthermore, the characteristic analysis indicated that CDHFD downregulated specific bacteria, such as norank_f_Muribaculaceae, Muribaculum, and Odoribacter, which are known to be associated with the systemic inflammatory response and mucosal barrier function. Blood tests showed that immune cells and inflammatory cytokines were significantly elevated in the model group, along with increased LPS induced by CDHFD. Pathological investigations demonstrated that CDHFD damages the intestinal mucosa while affecting the expression of tight junction proteins, including ZO-1, Claudin-1, Claudin-2, and Occludin, which may be attributed to the activation of the TRAF6/IκB/p65 signaling pathway. In conclusion, impaired gut microbial and mechanical barrier function is responsible for CDHFD-induced diarrhea. In this study, we constructed a model of diet-induced diarrhea by simulating human dietary patterns, evaluated the long-term effects of CDHFD on human intestinal barriers and immune systems, and revealed its mechanism of action based on chronic inflammation. This study validated the model's fit to provide an effective screening model for drug or functional food development.
Collapse
Affiliation(s)
- Yajuan Tian
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng Fu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Su
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meiqiu Yan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingjing Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxing Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuangwei Niu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuzhong Du
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xueling Hu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiayi Zheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bai Tao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zengguang Gao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianzhen Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Hangzhou, China.
| | - Guiyuan Lv
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
5
|
Zhou M, Li X, Wang X, Deng N, Cai Y, Tan Z. The dysfunction in intestinal microorganisms and enzyme activity as significant contributors to diarrhea with kidney-yang deficiency syndrome. Front Microbiol 2024; 14:1324938. [PMID: 38264481 PMCID: PMC10803573 DOI: 10.3389/fmicb.2023.1324938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
OBJECT To investigate the pathogenesis of diarrhea with kidney-yang deficiency syndrome by examining characteristic changes in intestinal microorganisms, enzyme activities, oxidative stress, and metabolism indices. METHODS Twenty mice were randomly and equally divided into control group (NC) and model group (NM). Mice in NM group received adenine suspension at a dosage of 50 mg/(kg⋅day) by gavage, 0.4 mL/time, once a day for 14 days, and Folium sennae decoction at a dosage of 10 g/(kg⋅day) by gavage, 0.4 mL/time, once a day for 7 days, starting on 8th day. Mice in NC group were administered an equivalent amount of sterile water by gavage once a day for 7 days, and twice a day from the 8th day. After modeling, assessments encompassed microbial culture, organ index calculation, microbial and enzyme activity detection, malondialdehyde (MDA) content determination, superoxide dismutase (SOD) activity, blood biochemical tests, and observation of kidney tissue pathological changes. RESULTS The results showed that in NM group, a reduction in the number of Lactobacillus and Bifidobacteria was noted, accompanied by an increase in the number of bacteria and E. coli. Xylanase activity in the intestinal contents and mucosa, protease activity in the intestinal mucosa, and intestinal mucosa microbial activity were diminished. Conversely, the activities of amylase, sucrase, and lactase increased in intestinal mucosa. Additionally, there was an elevation in the level of MDA. Renal tubular dilatation and inflammatory cell infiltration were observed in the renal interstitium. CONCLUSION These dysfunctions in intestinal microorganisms and enzyme activities suggest potential involvement in diarrhea with kidney-yang deficiency syndrome.
Collapse
Affiliation(s)
- Mengsi Zhou
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiaoya Li
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, Yunnan University of Traditional Chinese Medicine, Kunming, Yunan, China
| | - Xuehong Wang
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Cai
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Li H, Liu S, Zhang K, Zhu X, Dai J, Lu Y. Gut microbiome and plasma metabolome alterations in myopic mice. Front Microbiol 2023; 14:1251243. [PMID: 38179454 PMCID: PMC10764480 DOI: 10.3389/fmicb.2023.1251243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Background Myopia is one of the most common eye diseases leading to blurred distance vision. Inflammatory diseases could trigger or exacerbate myopic changes. Although gut microbiota bacteria are associated with various inflammatory diseases, little is known about its role in myopia. Materials and methods The mice were randomly divided into control and model groups, with the model group being attached-30D lens onto the eyes for 3 weeks. Then, mouse cecal contents and plasma were collected to analyze their intestinal microbiota and plasma metabolome. Results We identified that the microbial composition differed considerably between the myopic and non-myopic mice, with the relative abundance of Firmicutes phylum decreased obviously while that of Actinobacteria phylum was increased in myopia. Furthermore, Actinobacteria and Bifidobacterium were positively correlated with axial lengths (ALs) of eyeballs while negatively correlated with refractive diopters. Untargeted metabolomic analysis identified 141 differentially expressed metabolites, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed considerable enrichment mainly in amino acid metabolism pathways. Notably, pathways involved glutamate metabolism including "Glutamine and D-glutamate metabolism" and "Alanine, aspartate and glutamate metabolism" was changed dramatically, which presented as the concentrations of L-Glutamate and L-Glutamine decreased obviously in myopia. Interestingly, microbiome dysbiosis and metabolites alternations in myopia have a disrupting gut barrier feature. We further demonstrated that the gut barrier function was impaired in myopic mice manifesting in decreased expression of Occludin, ZO-1 and increased permeation of FITC-dextran. Discussion Myopic mice had obviously altered gut microbiome and metabolites profiles compared to non-myopic mice. The dysbiosis and plasma metabolomics shift in myopia had an interrupting gut barrier feature. Our study provides new insights into the possible role of the gut microbiota in myopia and reinforces the potential feasibility of microbiome-based therapies in myopia.
Collapse
Affiliation(s)
- Hao Li
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Shuyu Liu
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Keke Zhang
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xiangjia Zhu
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Lu
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|