1
|
Zucconi L, Fierro-Vásquez N, Antunes A, Bendia AG, Lavin P, González-Aravena M, Sani RK, Banerjee A. Advocating microbial diversity conservation in Antarctica. NPJ BIODIVERSITY 2025; 4:5. [PMID: 40038369 DOI: 10.1038/s44185-025-00076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025]
Abstract
Antarctica, a seemingly barren and icy wilderness, is home to a diverse array of microbial life that plays a critical role in sustaining its ecosystems. These resilient microorganisms drive nutrient cycling and carbon sequestration, but their function in global processes remains unclear. This pristine environment faces mounting threats from human activities, climate change, and increasing tourism. Contaminants, non-native species, and microplastics are increasingly reaching even the most remote regions, disrupting delicate microbial communities existing for millions of years. Antarctic microorganisms are not only ecologically significant but also valuable for biotechnological advancements, making their conservation imperative. Climate change exacerbates these threats, altering microbial habitats and promoting shifts in community structure. Tourism growth, though beneficial for education and economic reasons, poses significant challenges through biological and chemical contamination. Despite efforts under the Antarctic Treaty System to protect the region, there is a critical need for enhanced measures specifically targeting microbial conservation. This article underscores the importance of conserving Antarctic microbial diversity. It highlights the intricate microbial ecosystems and the urgency of implementing strategies such as stringent biosecurity measures, sustainable tourism practices, and comprehensive monitoring programs. Additionally, fostering international collaboration and research initiatives is vital for understanding and designing strategies to mitigate the impacts of environmental changes on microbial life. By prioritizing microbial conservation in policy frameworks and strengthening global cooperation, we can safeguard these unique ecosystems and ensure their resilience for future generations.
Collapse
Affiliation(s)
- Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Natalia Fierro-Vásquez
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, 1240300, Chile
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau SAR, China
- Institute of Science and Environment, University of Saint Joseph, Macau SAR, China
| | - Amanda Gonçalves Bendia
- Instituto Oceanográfico, Departamento de Oceanografia Biológica, Universidade de São Paulo, São Paulo, 05508-120, Brazil
| | - Paris Lavin
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, 1240300, Chile
- Centro de Investigación en Inmunología y Biotecnología Biomédica de Antofagasta, (CIIBBA), Universidad de Antofagasta, Antofagasta, 1240300, Chile
| | | | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota Mines, Rapid City, SD, USA
| | - Aparna Banerjee
- Functional Polysaccharides Research Group, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Talca, 3467987, Chile.
| |
Collapse
|
2
|
Lai Z, Liu Z, Zhao Y, Qin S, Zhang W, Lang T, Zhu Z, Sun Y. Distinct microbial communities under different rock-associated microhabitats in the Qaidam Desert. ENVIRONMENTAL RESEARCH 2024; 250:118462. [PMID: 38367835 DOI: 10.1016/j.envres.2024.118462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Hypolithic communities, which occupy highly specialised microhabitats beneath translucent rocks in desert and arid environments, have assembly mechanisms and ecosystem functions are not fully understood. Thus, in this study, we aimed to examine the microbial community structure, assembly, and function of light-accessible (under quartz, calcite, and hypolithic lichen-dominated biocrusts) and light-inaccessible microhabitats (under basalt and adjacent soil) in the Qaidam Desert, China. The results showed that hypolithic communities have different characteristics compared with microbial communities of light-inaccessible microhabitats. Notably, hypolithic bacterial communities were dominated by Cyanobacteria, whereas light-inaccessible microhabitats showed a predominance of Bacteroidetes and Proteobacteria. Although the class Dothideomycetes (phylum: Ascomycota) dominated the fungal communities between the two microhabitat types, Sordariomycetes were more prevalent in light-accessible microhabitats. Network and robustness analyses showed that hypolithic communities were less complex and more resilient than microbial communities in light-inaccessible microhabitats. Our results indicated that deterministic processes, specifically homogeneous selection, govern the establishment of bacterial and fungal communities in light-accessible and light-inaccessible microhabitats. The hypolithic community showed an increased frequency of phylotypes that exhibited increased tolerance to functional stress response pathways. In contrast to light-inaccessible microhabitats, light-accessible microhabitats showed a slight decrease and a notable increase in the prevalence of carbon fixation pathways in prokaryotes and carbon fixation in photosynthetic organisms, respectively. For fungi, light-accessible microhabitats enriched saprotrophic and ectomycorrhizal groups. These results highlight the importance of complex and diverse microhabitats in desert regions, which serve as vital shelters for microbes. Combining future research on interactions between hypolithic communities and environments may enhance our current understanding of their pivotal roles in sustaining desert ecosystems. This knowledge then be applied to design and implement informed conservation efforts to preserve these unique rock-associated microhabitats in desert ecosystems.
Collapse
Affiliation(s)
- Zongrui Lai
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Zhen Liu
- CAS Engineering Laboratory for Yellow River Delta Modern Agriculture, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Zhao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Shugao Qin
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenqi Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Tao Lang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-resource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China; College of Agricultural and Food Engineering, Baise University, Baise, Guangxi 533000, China.
| | - Zhengjie Zhu
- College of Agricultural and Food Engineering, Baise University, Baise, Guangxi 533000, China
| | - Yanfei Sun
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
3
|
Pushkareva E, Elster J, Kudoh S, Imura S, Becker B. Microbial community composition of terrestrial habitats in East Antarctica with a focus on microphototrophs. Front Microbiol 2024; 14:1323148. [PMID: 38249463 PMCID: PMC10797080 DOI: 10.3389/fmicb.2023.1323148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
The Antarctic terrestrial environment harbors a diverse community of microorganisms, which have adapted to the extreme conditions. The aim of this study was to describe the composition of microbial communities in a diverse range of terrestrial environments (various biocrusts and soils, sands from ephemeral wetlands, biofilms, endolithic and hypolithic communities) in East Antarctica using both molecular and morphological approaches. Amplicon sequencing of the 16S rRNA gene revealed the dominance of Chloroflexi, Cyanobacteria and Firmicutes, while sequencing of the 18S rRNA gene showed the prevalence of Alveolata, Chloroplastida, Metazoa, and Rhizaria. This study also provided a comprehensive assessment of the microphototrophic community revealing a diversity of cyanobacteria and eukaryotic microalgae in various Antarctic terrestrial samples. Filamentous cyanobacteria belonging to the orders Oscillatoriales and Pseudanabaenales dominated prokaryotic community, while members of Trebouxiophyceae were the most abundant representatives of eukaryotes. In addition, the co-occurrence analysis showed a prevalence of positive correlations with bacterial taxa frequently co-occurring together.
Collapse
Affiliation(s)
- Ekaterina Pushkareva
- Department of Biology, Botanical Institute, University of Cologne, Cologne, Germany
| | - Josef Elster
- Institute of Botany, Academy of Sciences of the Czech Republic, Třeboň, Czechia
- Centre for Polar Ecology, University of South Bohemia, České Budějovice, Czechia
| | - Sakae Kudoh
- Department of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Japan
- National Institute of Polar Research, Research Organization of Information and Systems, Tachikawa, Japan
| | - Satoshi Imura
- Department of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Japan
- National Institute of Polar Research, Research Organization of Information and Systems, Tachikawa, Japan
| | - Burkhard Becker
- Department of Biology, Botanical Institute, University of Cologne, Cologne, Germany
| |
Collapse
|