1
|
Xie Q, Duan Y. An Ultimate Question for Functional A-to-I mRNA Editing: Why Not a Genomic G? J Mol Evol 2025; 93:185-192. [PMID: 39964487 DOI: 10.1007/s00239-025-10238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/07/2025] [Indexed: 04/18/2025]
Abstract
A-to-I mRNA editing resembles A-to-G mutations. Functional mRNA editing, representing only a corner of total editing events, can be inferred from the experimental removal of editing. However, it is intuitive to ask why evolution chose RNA editing rather than directly (and simply) changing the genomic sequence to G? If G is better than A, then drift or constructive neutral evolution (CNE) theory can explain the emergence of such editing, but it is still unclear why the exemplified conserved editing is perfectly maintained without observing any subsequent A-to-G DNA mutations? Virtually every functional and conserved mRNA editing site faces this ultimate question until one justifies that being editable is better than a hardwired genomic allele. While the advantage of editability has been validated in fungi, this ultimate question has not been answered for any functional editing sites in animals. By providing several conceptual arguments and specific examples, we propose that proving the evolutionary adaptiveness of an editing site is far more difficult than revealing its function.
Collapse
Affiliation(s)
- Qiuhua Xie
- Department of Entomology and State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yuange Duan
- Department of Entomology and State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Duan Y, Cao Q. Systematic revelation and meditation on the significance of long exons using representative eukaryotic genomes. BMC Genomics 2025; 26:290. [PMID: 40128699 PMCID: PMC11931755 DOI: 10.1186/s12864-025-11504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Long exons/introns are not evenly distributed in the genome, but the biological significance of this phenomenon remains elusive. MATERIALS AND METHODS Exon properties were analyzed in seven well-annotated reference genomes, including human and other representative model organisms: mouse, fruitfly, worm, mouse-ear cress, corn, and rice. RESULTS In all species, last exons in genes tend to be the longest. Additionally, we found that (1) canonical splicing motifs are strongly underrepresented in 3'UTR; (2) Last exons tend to have low GC content; (3) Comparing with other species, first exons in D. melanogaster genes demonstrate lower GC content than internal exons. CONCLUSIONS It cannot be excluded that last exons of genes exert essential regulatory roles and is subjected to natural selection, exhibiting differential splicing tendency, and GC content compared to other parts of the gene body.
Collapse
Affiliation(s)
- Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Qi Cao
- Health Science Center, International Cancer Institute, Peking University, Beijing, 100191, China.
| |
Collapse
|
3
|
Zheng C, Ma L, Song F, Tian L, Cai W, Li H, Duan Y. Comparative genomic analyses reveal evidence for adaptive A-to-I RNA editing in insect Adar gene. Epigenetics 2024; 19:2333665. [PMID: 38525798 DOI: 10.1080/15592294.2024.2333665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/17/2024] [Indexed: 03/26/2024] Open
Abstract
Although A-to-I RNA editing leads to similar effects to A-to-G DNA mutation, nonsynonymous RNA editing (recoding) is believed to confer its adaptiveness by 'epigenetically' regulating proteomic diversity in a temporospatial manner, avoiding the pleiotropic effect of genomic mutations. Recent discoveries on the evolutionary trajectory of Ser>Gly auto-editing site in insect Adar gene demonstrated a selective advantage to having an editable codon compared to uneditable ones. However, apart from pure observations, quantitative approaches for justifying the adaptiveness of individual RNA editing sites are still lacking. We performed a comparative genomic analysis on 113 Diptera species, focusing on the Adar Ser>Gly auto-recoding site in Drosophila. We only found one species having a derived Gly at the corresponding site, and this occurrence was significantly lower than genome-wide random expectation. This suggests that the Adar Ser>Gly site is unlikely to be genomically replaced with G during evolution, and thus indicating the advantage of editable status over hardwired genomic alleles. Similar trends were observed for the conserved Ile>Met recoding in gene Syt1. In the light of evolution, we established a comparative genomic approach for quantitatively justifying the adaptiveness of individual editing sites. Priority should be given to such adaptive editing sites in future functional studies.
Collapse
Affiliation(s)
- Caiqing Zheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Zhao T, Ma L, Xu S, Cai W, Li H, Duan Y. Narrowing down the candidates of beneficial A-to-I RNA editing by comparing the recoding sites with uneditable counterparts. Nucleus 2024; 15:2304503. [PMID: 38286757 PMCID: PMC10826634 DOI: 10.1080/19491034.2024.2304503] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024] Open
Abstract
Adar-mediated adenosine-to-inosine (A-to-I) RNA editing mainly occurs in nucleus and diversifies the transcriptome in a flexible manner. It has been a challenging task to identify beneficial editing sites from the sea of total editing events. The functional Ser>Gly auto-recoding site in insect Adar gene has uneditable Ser codons in ancestral nodes, indicating the selective advantage to having an editable status. Here, we extended this case study to more metazoan species, and also looked for all Drosophila recoding events with potential uneditable synonymous codons. Interestingly, in D. melanogaster, the abundant nonsynonymous editing is enriched in the codons that have uneditable counterparts, but the Adar Ser>Gly case suggests that the editable orthologous codons in other species are not necessarily edited. The use of editable versus ancestral uneditable codon is a smart way to infer the selective advantage of RNA editing, and priority might be given to these editing sites for functional studies due to the feasibility to construct an uneditable allele. Our study proposes an idea to narrow down the candidates of beneficial recoding sites. Meanwhile, we stress that the matched transcriptomes are needed to verify the conservation of editing events during evolution.
Collapse
Affiliation(s)
- Tianyou Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shiwen Xu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Duan Y, Ma L, Zhao T, Liu J, Zheng C, Song F, Tian L, Cai W, Li H. Conserved A-to-I RNA editing with non-conserved recoding expands the candidates of functional editing sites. Fly (Austin) 2024; 18:2367359. [PMID: 38889318 PMCID: PMC11188811 DOI: 10.1080/19336934.2024.2367359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing recodes the genome and confers flexibility for the organisms to adapt to the environment. It is believed that RNA recoding sites are well suited for facilitating adaptive evolution by increasing the proteomic diversity in a temporal-spatial manner. The function and essentiality of a few conserved recoding sites are recognized. However, the experimentally discovered functional sites only make up a small corner of the total sites, and there is still the need to expand the repertoire of such functional sites with bioinformatic approaches. In this study, we define a new category of RNA editing sites termed 'conserved editing with non-conserved recoding' and systematically identify such sites in Drosophila editomes, figuring out their selection pressure and signals of adaptation at inter-species and intra-species levels. Surprisingly, conserved editing sites with non-conserved recoding are not suppressed and are even slightly overrepresented in Drosophila. DNA mutations leading to such cases are also favoured during evolution, suggesting that the function of those recoding events in different species might be diverged, specialized, and maintained. Finally, structural prediction suggests that such recoding in potassium channel Shab might increase ion permeability and compensate the effect of low temperature. In conclusion, conserved editing with non-conserved recoding might be functional as well. Our study provides novel aspects in considering the adaptive evolution of RNA editing sites and meanwhile expands the candidates of functional recoding sites for future validation.
Collapse
Affiliation(s)
| | | | | | - Jiyao Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Caiqing Zheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Zhang P, Zhang W, Li J, Liu H, Yu Y, Yang X, Jiang W. Host-dependent C-to-U RNA editing in SARS-CoV-2 creates novel viral genes with optimized expressibility. Front Cell Infect Microbiol 2024; 14:1476605. [PMID: 39445213 PMCID: PMC11496155 DOI: 10.3389/fcimb.2024.1476605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Rampant C-to-U RNA editing drives the mutation and evolution of SARS-CoV-2. While much attention has been paid to missense mutations, the C-to-U events leading to AUG and thus creating novel ORFs were uninvestigated. By utilizing the public time-course mutation data from the worldwide SARS-CoV-2 population, we systematically identified the "AUG-gain mutations" caused by C-to-U RNA editing. Synonymous mutations were of special focus. A total of 58 synonymous C-to-U sites are able to create out-of-frame AUG in coding sequence (CDS). These 58 synonymous sites showed significantly higher allele frequency (AF) and increasing rate (dAF/dt) than other C-to-U synonymous sites in the SARS-CoV-2 population, suggesting that these 58 AUG-gain events conferred additional benefits to the virus and are subjected to positive selection. The 58 predicted new ORFs created by AUG-gain events showed the following advantages compared to random expectation: they have longer lengths, higher codon adaptation index (CAI), higher Kozak scores, and higher tRNA adaptation index (tAI). The 58 putatively novel ORFs have high expressibility and are very likely to be functional, providing an explanation for the positive selection on the 58 AUG-gain mutations. Our study proposed a possible mechanism of the emergence of de novo genes in SARS-CoV-2. This idea should be helpful in studying the mutation and evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Pirun Zhang
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenli Zhang
- Qingdao Mental Health Center, Qingdao, Shandong, China
| | - Jiahuan Li
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, Shandong, China
| | - Huiying Liu
- Qingdao Hospital of Traditional Chinese Medicine, Qingdao Haici Hospital, Qingdao, Shandong, China
| | - Yantong Yu
- Pulmonary and Critical Care Medicine Department 2, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Xiaoping Yang
- Qingdao Hospital of Traditional Chinese Medicine, Qingdao Haici Hospital, Qingdao, Shandong, China
- College of First Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenqing Jiang
- Qingdao Hospital of Traditional Chinese Medicine, Qingdao Haici Hospital, Qingdao, Shandong, China
- Pulmonary and Critical Care Medicine Department 2, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| |
Collapse
|
7
|
Hou Q, Shang L, Chen X, Luo Q, Wei L, Zhang C. Convergent evolution of allele-specific gene expression that leads to non-small cell lung cancer in different human populations. J Appl Genet 2024; 65:493-504. [PMID: 38036772 DOI: 10.1007/s13353-023-00813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
Phenotypical innovations during evolution are caused by novel mutations, which are usually heterozygous at the beginning. The gene expressions on two alleles of these mutation sites are not necessarily identical, leading to flexible allele-specific regulation in cell systems. We retrieve the transcriptome data of normal and non-small cell lung cancer (NSCLC) tissues from 47 African Americans (AA) and 50 European Americans (EA). We analyze the differentially expressed genes (DEGs) in NSCLC as well as the tumor-specific mutations. Expression and mutation profiles show convergent evolution in AA and EA populations. The tumor-specific mutations are poorly overlapped, but many of them are located in the same genes, mainly oncogenes and tumor suppressor genes. The DEGs in tumors are majorly caused by the mutated alleles rather than normal alleles. The relative expressions of mutated alleles are highly correlated between AA and EA. The differential expression in NSCLC is predominantly mediated by the mutated alleles on heterozygous sites. This molecular mechanism underlying NSCLC oncogenesis is conserved across different human populations, exhibiting convergent evolution. We present this novel angle that differential expression analysis should be performed separately for different alleles. Our ideas should greatly benefit the cancer community.
Collapse
Affiliation(s)
- Qiuyu Hou
- Department of Thoracic Surgery, Qingdao Eighth People's Hospital, Qingdao, 266100, Shandong, China
| | - Lifeng Shang
- Department of Thoracic Surgery, Qingdao Eighth People's Hospital, Qingdao, 266100, Shandong, China
| | - Xu Chen
- Department of Thoracic Surgery, Qingdao Eighth People's Hospital, Qingdao, 266100, Shandong, China
| | - Qiang Luo
- Department of Thoracic Surgery, Qingdao Eighth People's Hospital, Qingdao, 266100, Shandong, China
| | - Liang Wei
- Department of Thoracic Surgery, Qingdao Eighth People's Hospital, Qingdao, 266100, Shandong, China
| | - Chence Zhang
- Department of Thoracic Surgery, Qingdao Eighth People's Hospital, Qingdao, 266100, Shandong, China.
| |
Collapse
|
8
|
Zheng C, Liu J, Duan Y. Adaptive evolution of A-to-I auto-editing site in Adar of eusocial insects. BMC Genomics 2024; 25:803. [PMID: 39187830 PMCID: PMC11346018 DOI: 10.1186/s12864-024-10709-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Adenosine-to-inosine (A-to-I) RNA editing is a co-/post-transcriptional modification introducing A-to-G variations in RNAs. There is extensive discussion on whether the flexibility of RNA editing exerts a proteomic diversification role, or it just acts like hardwired mutations to correct the genomic allele. Eusocial insects evolved the ability to generate phenotypically differentiated individuals with the same genome, indicating the involvement of epigenetic/transcriptomic regulation. METHODS We obtained the genomes of 104 Hymenoptera insects and the transcriptomes of representative species. Comparative genomic analysis was performed to parse the evolutionary trajectory of a regulatory Ile > Met auto-recoding site in Adar gene. RESULTS At genome level, the pre-editing Ile codon is conserved across a node containing all eusocial hymenopterans. At RNA level, the editing events are confirmed in representative species and shows considerable condition-specificity. Compared to random expectation, the editable Ile codon avoids genomic substitutions to Met or to uneditable Ile codons, but does not avoid mutations to other unrelated amino acids. CONCLUSIONS The flexibility of Adar auto-recoding site in Hymenoptera is selectively maintained, supporting the flexible RNA editing hypothesis. We proposed a new angle to view the adaptation of RNA editing, providing another layer to explain the great phenotypical plasticity of eusocial insects.
Collapse
Affiliation(s)
- Caiqing Zheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jiyao Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Bortoletto E, Rosani U, Sakaguchi A, Yoon J, Nagasawa K, Venier P. Insights into ADAR gene complement, expression patterns, and RNA editing landscape in Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109743. [PMID: 38964433 DOI: 10.1016/j.fsi.2024.109743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Adenosine Deaminases Acting on RNA (ADARs) are evolutionarily conserved enzymes known to convert adenosine to inosine in double-stranded RNAs and participate in host-virus interactions. Conducting a meta-analysis of available transcriptome data, we identified and characterised eight ADAR transcripts in Chlamys farreri, a farmed marine scallop susceptible to Acute viral necrosis virus (AVNV) infections and mortality outbreaks. Accordingly, we identified six ADAR genes in the Zhikong scallop genome, revised previous gene annotations, and traced alternative splicing variants. In detail, each ADAR gene encodes a unique combination of functional domains, always including the Adenosine deaminase domain, RNA binding domains and, in one case, two copies of a Z-DNA binding domain. After phylogenetic analysis, five C. farreri ADARs clustered in the ADAR1 clade along with sequences from diverse animal phyla. Gene expression analysis indicated CF051320 as the most expressed ADAR, especially in the eye and male gonad. The other four ADAR1 genes and one ADAR2 gene exhibited variable expression levels, with CF105370 and CF051320 significantly increasing during early scallop development. ADAR-mediated single-base editing, evaluated across adult C. farreri tissues and developmental stages, was mainly detectable in intergenic regions (83 % and 85 %, respectively). Overall, the expression patterns of the six ADAR genes together with the editing and hyper-editing values computed on scallops RNA-seq samples support the adaptive value of ADAR1-mediated editing, particularly in the pre-settling larval stages.
Collapse
Affiliation(s)
| | - Umberto Rosani
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Akari Sakaguchi
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Jeongwoong Yoon
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Kazue Nagasawa
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Paola Venier
- Department of Biology, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
10
|
Ma L, Zheng C, Liu J, Song F, Tian L, Cai W, Li H, Duan Y. Learning from the Codon Table: Convergent Recoding Provides Novel Understanding on the Evolution of A-to-I RNA Editing. J Mol Evol 2024:10.1007/s00239-024-10190-z. [PMID: 39012510 DOI: 10.1007/s00239-024-10190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing recodes the genetic information. Apart from diversifying the proteome, another tempting advantage of RNA recoding is to correct deleterious DNA mutation and restore ancestral allele. Solid evidences for beneficial restorative editing are very rare in animals. By searching for "convergent recoding" under a phylogenetic context, we proposed this term for judging the potential restorative functions of particular editing site. For the well-known mammalian Gln>Arg (Q>R) recoding site, its ancestral state in vertebrate genomes was the pre-editing Gln, and all 470 available mammalian genomes strictly avoid other three equivalent ways to achieve Arg in protein. The absence of convergent recoding from His>Arg, or synonymous mutations on Gln codons, could be attributed to the strong maintenance on editing motif and structure, but the absence of direct A-to-G mutation is extremely unexpected. With similar ideas, we found cases of convergent recoding in Drosophila genus, reducing the possibility of their restorative function. In summary, we defined an interesting scenario of convergent recoding, the occurrence of which could be used as preliminary judgements for whether a recoding site has a sole restorative role. Our work provides novel insights to the natural selection and evolution of RNA editing.
Collapse
Affiliation(s)
- Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Caiqing Zheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jiyao Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Liu J, Zheng C, Duan Y. New comparative genomic evidence supporting the proteomic diversification role of A-to-I RNA editing in insects. Mol Genet Genomics 2024; 299:46. [PMID: 38642133 DOI: 10.1007/s00438-024-02141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/29/2023] [Indexed: 04/22/2024]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing, resembling A-to-G mutation, confers adaptiveness by increasing proteomic diversity in a temporal-spatial manner. This evolutionary theory named "proteomic diversifying hypothesis" has only partially been tested in very few organisms like Drosophila melanogaster, mainly by observing the positive selection on nonsynonymous editing events. To find additional genome-wide evidences supporting this interesting assumption, we retrieved the genomes of four Drosophila species and collected 20 deep-sequenced transcriptomes of different developmental stages and neuron populations of D. melanogaster. We systematically profiled the RNA editomes in these samples and performed meticulous comparative genomic analyses. Further evidences were found to support the diversifying hypothesis. (1) None of the nonsynonymous editing sites in D. melanogaster had ancestral G-alleles, while the silent editing sites had an unignorable fraction of ancestral G-alleles; (2) Only very few nonsynonymous editing sites in D. melanogaster had corresponding G-alleles derived in the genomes of sibling species, and the fraction of such situation was significantly lower than that of silent editing sites; (3) The few nonsynonymous editing with corresponding G-alleles had significantly more variable editing levels (across samples) than other nonsynonymous editing sites in D. melanogaster. The proteomic diversifying nature of RNA editing in Drosophila excludes the restorative role which favors an ancestral G-allele. The few fixed G-alleles in sibling species might facilitate the adaptation to particular environment and the corresponding nonsynonymous editing in D. melanogaster would introduce stronger advantage of flexible proteomic diversification. With multi-Omics data, our study consolidates the nature of evolutionary significance of A-to-I RNA editing sites in model insects.
Collapse
Affiliation(s)
- Jiyao Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Caiqing Zheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Duan Y, Ma L, Liu J, Liu X, Song F, Tian L, Cai W, Li H. The first A-to-I RNA editome of hemipteran species Coridius chinensis reveals overrepresented recoding and prevalent intron editing in early-diverging insects. Cell Mol Life Sci 2024; 81:136. [PMID: 38478033 PMCID: PMC10937787 DOI: 10.1007/s00018-024-05175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Metazoan adenosine-to-inosine (A-to-I) RNA editing resembles A-to-G mutation and increases proteomic diversity in a temporal-spatial manner, allowing organisms adapting to changeable environment. The RNA editomes in many major animal clades remain unexplored, hampering the understanding on the evolution and adaptation of this essential post-transcriptional modification. METHODS We assembled the chromosome-level genome of Coridius chinensis belonging to Hemiptera, the fifth largest insect order where RNA editing has not been studied yet. We generated ten head RNA-Seq libraries with DNA-Seq from the matched individuals. RESULTS We identified thousands of high-confidence RNA editing sites in C. chinensis. Overrepresentation of nonsynonymous editing was observed, but conserved recoding across different orders was very rare. Under cold stress, the global editing efficiency was down-regulated and the general transcriptional processes were shut down. Nevertheless, we found an interesting site with "conserved editing but non-conserved recoding" in potassium channel Shab which was significantly up-regulated in cold, serving as a candidate functional site in response to temperature stress. CONCLUSIONS RNA editing in C. chinensis largely recodes the proteome. The first RNA editome in Hemiptera indicates independent origin of beneficial recoding during insect evolution, which advances our understanding on the evolution, conservation, and adaptation of RNA editing.
Collapse
Affiliation(s)
- Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jiyao Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xinzhi Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Li J, Li C, Xu W. Liver cancer-specific mutations in functional domains of ADAR2 lead to the elevation of coding and non-coding RNA editing in multiple tumor-related genes. Mol Genet Genomics 2024; 299:1. [PMID: 38170228 DOI: 10.1007/s00438-023-02091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/17/2023] [Indexed: 01/05/2024]
Abstract
Mutation is the major cause of phenotypic innovations. Apart from DNA mutations, the alteration on RNA such as the ADAR-mediated A-to-I RNA editing could also shape the phenotype. These two layers of variations have not been systematically combined to study their collective roles in cancers. We collected the high-quality transcriptomes of ten hepatocellular carcinoma (HCC) and the matched control samples. We systematically identified HCC-specific mutations in the exonic regions and profiled the A-to-I RNA editome in each sample. All ten HCC samples had mutations in the CDS of ADAR2 gene (dsRNA-binding domain or catalytic domain). The consequence of these mutations converged to the elevation of ADAR2 efficiency as reflected by the global increase of RNA editing levels in HCC. The up-regulated editing sites (UES) were enriched in the CDS and UTR of oncogenes and tumor suppressor genes (TSG), indicating the possible roles of these target genes in HCC oncogenesis. We present the mutation-ADAR2-UES-oncogene/TSG-HCC axis that explains how mutations at different layers would finally lead to abnormal phenotype. In the light of central dogma, our work provides novel insights into how to fully take advantage of the transcriptome data to decipher the consequence of mutations.
Collapse
Affiliation(s)
- Jian Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Chaowei Li
- Department of PET/CT, The Second Clinical Medical College of Qingdao University (Qingdao Center Hospital), Qingdao, 266042, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| |
Collapse
|
14
|
Wei L. In silico and experimental approaches for validating RNA editing events in transcriptomes. RNA Biol 2024; 21:31-36. [PMID: 39582096 PMCID: PMC11591476 DOI: 10.1080/15476286.2024.2432729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
As a typical RNA virus, SARS-CoV-2 is subjected to RNA editing in host cells. While some researchers believe that a traditional variant calling pipeline retrieves all true-positive RNA editing events from the transcriptome, others argue that conventional methods identify many false-positive sites. Here, I describe several additional in silico and experimental approaches to validate the authenticity of RNA editing in SARS-CoV-2. These approaches include requiring strand-specific sequencing, analysis of hyperedited reads, linkage analysis, orthogonal methods like mass spectrometry, and the use of ADAR-deficient host cells. These findings may improve future analyses on the identification of RNA editing, especially in RNA viruses.
Collapse
Affiliation(s)
- Lai Wei
- College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
15
|
Liu J, Zhao T, Zheng C, Ma L, Song F, Tian L, Cai W, Li H, Duan Y. An orthology-based methodology as a complementary approach to retrieve evolutionarily conserved A-to-I RNA editing sites. RNA Biol 2024; 21:29-45. [PMID: 39256954 PMCID: PMC11404581 DOI: 10.1080/15476286.2024.2397757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
Adar-mediated adenosine-to-inosine (A-to-I) mRNA editing is a conserved mechanism that exerts diverse regulatory functions during the development, evolution, and adaptation of metazoans. The accurate detection of RNA editing sites helps us understand their biological significance. In this work, with an improved genome assembly of honeybee (Apis mellifera), we used a new orthology-based methodology to complement the traditional pipeline of (de novo) RNA editing detection. Compared to the outcome of traditional pipeline, we retrieved many novel editing sites in CDS that are deeply conserved between honeybee and other distantly related insects. The newly retrieved sites were missed by the traditional de novo identification due to the stringent criteria for controlling false-positive rate. Caste-specific editing sites are identified, including an Ile>Met auto-recoding site in Adar. This recoding was even conserved between honeybee and bumblebee, suggesting its putative regulatory role in shaping the phenotypic plasticity of eusocial Hymenoptera. In summary, we proposed a complementary approach to the traditional pipeline and retrieved several previously unnoticed CDS editing sites. From both technical and biological aspects, our works facilitate future researches on finding the functional editing sites and advance our understanding on the connection between RNA editing and the great phenotypic diversity of organisms.
Collapse
Affiliation(s)
- Jiyao Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tianyou Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Caiqing Zheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Xu Y, Liu J, Zhao T, Song F, Tian L, Cai W, Li H, Duan Y. Identification and Interpretation of A-to-I RNA Editing Events in Insect Transcriptomes. Int J Mol Sci 2023; 24:17126. [PMID: 38138955 PMCID: PMC10742984 DOI: 10.3390/ijms242417126] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is the most prevalent RNA modification in the nervous systems of metazoans. To study the biological significance of RNA editing, we first have to accurately identify these editing events from the transcriptome. The genome-wide identification of RNA editing sites remains a challenging task. In this review, we will first introduce the occurrence, regulation, and importance of A-to-I RNA editing and then describe the established bioinformatic procedures and difficulties in the accurate identification of these sit esespecially in small sized non-model insects. In brief, (1) to obtain an accurate profile of RNA editing sites, a transcriptome coupled with the DNA resequencing of a matched sample is favorable; (2) the single-cell sequencing technique is ready to be applied to RNA editing studies, but there are a few limitations to overcome; (3) during mapping and variant calling steps, various issues, like mapping and base quality, soft-clipping, and the positions of mismatches on reads, should be carefully considered; (4) Sanger sequencing of both RNA and the matched DNA is the best verification of RNA editing sites, but other auxiliary evidence, like the nonsynonymous-to-synonymous ratio or the linkage information, is also helpful for judging the reliability of editing sites. We have systematically reviewed the understanding of the biological significance of RNA editing and summarized the methodology for identifying such editing events. We also raised several promising aspects and challenges in this field. With insightful perspectives on both scientific and technical issues, our review will benefit the researchers in the broader RNA editing community.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuange Duan
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.X.); (J.L.); (T.Z.); (F.S.); (L.T.); (W.C.); (H.L.)
| |
Collapse
|
17
|
Zhang Y, Duan Y. Genome-Wide Analysis on Driver and Passenger RNA Editing Sites Suggests an Underestimation of Adaptive Signals in Insects. Genes (Basel) 2023; 14:1951. [PMID: 37895300 PMCID: PMC10606203 DOI: 10.3390/genes14101951] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing leads to a similar effect to A-to-G mutations. RNA editing provides a temporo-spatial flexibility for organisms. Nonsynonymous (Nonsyn) RNA editing in insects is over-represented compared with synonymous (Syn) editing, suggesting adaptive signals of positive selection on Nonsyn editing during evolution. We utilized the brain RNA editome of Drosophila melanogaster to systematically study the LD (r2) between editing sites and infer its impact on the adaptive signals of RNA editing. Pairs of editing sites (PESs) were identified from the transcriptome. For CDS PESs of two consecutive editing sites, their occurrence was significantly biased to type-3 PES (Syn-Nonsyn). The haplotype frequency of type-3 PES exhibited a significantly higher abundance of AG than GA, indicating that the rear Nonsyn site is the driver that promotes the editing of the front Syn site (passenger). The exclusion of passenger Syn sites dramatically amplifies the adaptive signal of Nonsyn RNA editing. Our study for the first time quantitatively demonstrates that the linkage between RNA editing events comes from hitchhiking effects and leads to the underestimation of adaptive signals for Nonsyn editing. Our work provides novel insights for studying the evolutionary significance of RNA editing events.
Collapse
Affiliation(s)
| | - Yuange Duan
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
18
|
Duan Y, Ma L, Song F, Tian L, Cai W, Li H. Autorecoding A-to-I RNA editing sites in the Adar gene underwent compensatory gains and losses in major insect clades. RNA (NEW YORK, N.Y.) 2023; 29:1509-1519. [PMID: 37451866 PMCID: PMC10578469 DOI: 10.1261/rna.079682.123] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
As one of the most prevalent RNA modifications in animals, adenosine-to-inosine (A-to-I) RNA editing facilitates the environmental adaptation of organisms by diversifying the proteome in a temporal-spatial manner. In flies and bees, the editing enzyme Adar has independently gained two different autorecoding sites that form an autofeedback loop, stabilizing the overall editing efficiency. This ensures cellular homeostasis by keeping the normal function of target genes. However, in a broader range of insects, the evolutionary dynamics and significance of this Adar autoregulatory mechanism are unclear. We retrieved the genomes of 377 arthropod species covering the five major insect orders (Hemiptera, Hymenoptera, Coleoptera, Diptera, and Lepidoptera) and aligned the Adar autorecoding sites across all genomes. We found that the two autorecoding sites underwent compensatory gains and losses during the evolution of two orders with the most sequenced species (Diptera and Hymenoptera), and that the two editing sites were mutually exclusive among them: One editable site is significantly linked to another uneditable site. This autorecoding mechanism of Adar could flexibly diversify the proteome and stabilize global editing activity. Many insects independently selected different autorecoding sites to achieve a feedback loop and regulate the global RNA editome, revealing an interesting phenomenon during evolution. Our study reveals the evolutionary force acting on accurate regulation of RNA editing activity in insects and thus deepens our understanding of the functional importance of RNA editing in environmental adaptation and evolution.
Collapse
Affiliation(s)
- Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
19
|
Xie Y, Chan PL, Kwan HS, Chang J. The Genome-Wide Characterization of Alternative Splicing and RNA Editing in the Development of Coprinopsis cinerea. J Fungi (Basel) 2023; 9:915. [PMID: 37755023 PMCID: PMC10532568 DOI: 10.3390/jof9090915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Coprinopsis cinerea is one of the model species used in fungal developmental studies. This mushroom-forming Basidiomycetes fungus has several developmental destinies in response to changing environments, with dynamic developmental regulations of the organism. Although the gene expression in C. cinerea development has already been profiled broadly, previous studies have only focused on a specific stage or process of fungal development. A comprehensive perspective across different developmental paths is lacking, and a global view on the dynamic transcriptional regulations in the life cycle and the developmental paths is far from complete. In addition, knowledge on co- and post-transcriptional modifications in this fungus remains rare. In this study, we investigated the transcriptional changes and modifications in C. cinerea during the processes of spore germination, vegetative growth, oidiation, sclerotia formation, and fruiting body formation by inducing different developmental paths of the organism and profiling the transcriptomes using the high-throughput sequencing method. Transition in the identity and abundance of expressed genes drive the physiological and morphological alterations of the organism, including metabolism and multicellularity construction. Moreover, stage- and tissue-specific alternative splicing and RNA editing took place and functioned in C. cinerea. These modifications were negatively correlated to the conservation features of genes and could provide extra plasticity to the transcriptome during fungal development. We suggest that C. cinerea applies different molecular strategies in its developmental regulation, including shifts in expressed gene sets, diversifications of genetic information, and reversible diversifications of RNA molecules. Such features would increase the fungal adaptability in the rapidly changing environment, especially in the transition of developmental programs and the maintenance and balance of genetic and transcriptomic divergence. The multi-layer regulatory network of gene expression serves as the molecular basis of the functioning of developmental regulation.
Collapse
Affiliation(s)
- Yichun Xie
- State Key Laboratory of Agrobiotechnology, Food Research Center, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China;
| | - Po-Lam Chan
- Food Research Center, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hoi-Shan Kwan
- Food Research Center, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jinhui Chang
- Department of Food Science and Nutrition, and Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
20
|
Ge F, Cao X, Jiang Y. A-to-I RNA editing shows dramatic up-regulation in osteosarcoma and broadly regulates tumor-related genes by altering microRNA target regions. J Appl Genet 2023; 64:493-505. [PMID: 37542613 DOI: 10.1007/s13353-023-00777-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
A-to-I RNA editing is a prevalent type of RNA modification in animals. The dysregulation of RNA editing has led to multiple human cancers. However, the role of RNA editing has never been studied in osteosarcoma, a complex bone cancer with unknown molecular basis. We retrieved the RNA-sequencing data from 24 primary osteosarcoma patients and 3 healthy controls. We systematically profiled the RNA editomes in these samples and quantitatively identified reliable differential editing sites (DES) between osteosarcoma and normal samples. RNA editing efficiency is dramatically increased in osteosarcoma, presumably due to the significant up-regulation of editing enzymes ADAR1 and ADAR2. Up-regulated DES in osteosarcoma are enriched in 3'UTRs. Strikingly, such 3'UTR sites are further enriched in microRNA binding regions of gene EMP2 and other oncogenes, abolishing the microRNA suppression on target genes. Accordingly, the expression of these tumor-promoting genes is elevated in osteosarcoma. There might be an RNA editing-dependent pathway leading to osteosarcoma. We expanded our knowledge on the potential roles of RNA editing in oncogenesis. Based on these molecular features, our work is valuable for future prognosis and diagnosis of osteosarcoma.
Collapse
Affiliation(s)
- Fuqun Ge
- Department of Joint Surgery, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Xinyue Cao
- School of Clinical Medicine, Qilu Medical University, Zibo, 255300, Shandong, China
| | - Yankai Jiang
- Department of Joint Surgery, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China.
| |
Collapse
|
21
|
Duan Y, Xu Y, Song F, Tian L, Cai W, Li H. Differential adaptive RNA editing signals between insects and plants revealed by a new measurement termed haplotype diversity. Biol Direct 2023; 18:47. [PMID: 37592344 PMCID: PMC10433597 DOI: 10.1186/s13062-023-00404-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND C-to-U RNA editing in plants is believed to confer its evolutionary adaptiveness by reversing unfavorable DNA mutations. This "restorative hypothesis" has not yet been tested genome-wide. In contrast, A-to-I RNA editing in insects like Drosophila and honeybee is already known to benefit the host by increasing proteomic diversity in a spatial-temporal manner (namely "diversifying hypothesis"). METHODS We profiled the RNA editomes of multiple tissues of Arabidopsis thaliana, Drosophila melanogaster, and Apis melifera. We unprecedentedly defined the haplotype diversity (HD) of RNA molecules based on nonsynonymous editing events (recoding sites). RESULTS Signals of adaptation is confirmed in Arabidopsis by observing higher frequencies and levels at nonsynonymous editing sites over synonymous sites. Compared to A-to-I recoding sites in Drosophila, the C-to-U recoding sites in Arabidopsis show significantly lower HD, presumably due to the stronger linkage between C-to-U events. CONCLUSIONS C-to-U RNA editing in Arabidopsis is adaptive but it is not designed for diversifying the proteome like A-to-I editing in Drosophila. Instead, C-to-U recoding sites resemble DNA mutations. Our observation supports the restorative hypothesis of plant C-to-U editing which claims that editing is used for fixing unfavorable genomic sequences.
Collapse
Affiliation(s)
- Yuange Duan
- Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Ye Xu
- Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Fan Song
- Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Li Tian
- Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wanzhi Cai
- Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Hu Li
- Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
22
|
Ma L, Zheng C, Xu S, Xu Y, Song F, Tian L, Cai W, Li H, Duan Y. A full repertoire of Hemiptera genomes reveals a multi-step evolutionary trajectory of auto-RNA editing site in insect Adar gene. RNA Biol 2023; 20:703-714. [PMID: 37676051 PMCID: PMC10486299 DOI: 10.1080/15476286.2023.2254985] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/31/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing, mediated by metazoan ADAR enzymes, is a prevalent post-transcriptional modification that diversifies the proteome and promotes adaptive evolution of organisms. The Drosophila Adar gene has an auto-recoding site (termed S>G site) that forms a negative-feedback loop and stabilizes the global editing activity. However, the evolutionary trajectory of Adar S>G site in many other insects remains largely unknown, preventing us from a deeper understanding on the significance of this auto-editing mechanism. In this study, we retrieved the well-annotated genomes of 375 arthropod species including the five major insect orders (Lepidoptera, Diptera, Coleoptera, Hymenoptera and Hemiptera) and several outgroup species. We performed comparative genomic analysis on the Adar auto-recoding S>G site. We found that the ancestral state of insect S>G site was an uneditable serine codon (unSer) and that this state was largely maintained in Hymenoptera. The editable serine codon (edSer) appeared in the common ancestor of Lepidoptera, Diptera and Coleoptera and was almost fixed in the three orders. Interestingly, Hemiptera species possessed comparable numbers of unSer and edSer codons, and a few 'intermediate codons', demonstrating a multi-step evolutionary trace from unSer-to-edSer with non-synchronized mutations at three codon positions. We argue that the evolution of Adar S>G site is the best genomic evidence supporting the 'proteomic diversifying hypothesis' of RNA editing. Our work deepens our understanding on the evolutionary significance of Adar auto-recoding site which stabilizes the global editing activity and controls transcriptomic diversity.
Collapse
Affiliation(s)
- Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Caiqing Zheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shiwen Xu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ye Xu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|