1
|
Friesema IH, van der Voort M, Wit B, van Hoek AH, van den Beld MJ, van der Weijden C, Franz E. Cross-sectoral genomic surveillance reveals a lack of insight in sources of human infections with Shiga toxin-producing Escherichia coli, the Netherlands, 2017 to 2023. Euro Surveill 2024; 29. [PMID: 39639817 DOI: 10.2807/1560-7917.es.2024.29.49.2400264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen associated with illness ranging from mild diarrhoea to haemolytic uremic syndrome (HUS) or even death. Cross-sectoral data sharing provides an opportunity to gain insight in reservoirs and sources of human infections and starting points for pro-active measures. Nevertheless, phylogenetic clustering of STEC strains from animals, food and human cases is low in the Dutch surveillance system. This is partly due to the substantial contribution of international travel and person-to-person spread in the STEC epidemiology. Furthermore, some STEC strains causing disease in humans may have a human reservoir. Although the main reservoirs and sources are included in the Dutch monitoring programmes, some animals and food products may be under-recognised as potential sources of human infections. More effort in investigating the role of other reservoirs beyond the well-known can provide a better understanding on STEC ecology in general, improving surveillance and source attribution, and ultimately provide better guidance for monitoring and source finding. This also implies having good diagnostics in place and isolates available for typing. Therefore, on the human side of the surveillance, the decision has been made to start isolating STEC at national level.
Collapse
Affiliation(s)
- Ingrid Hm Friesema
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Ben Wit
- Netherlands Food and Consumer Products Safety Authority (NVWA), Utrecht, The Netherlands
| | - Angela Ham van Hoek
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Maaike Jc van den Beld
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Coen van der Weijden
- Netherlands Food and Consumer Products Safety Authority (NVWA), Utrecht, The Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
2
|
Richter L, Duvenage S, du Plessis EM, Msimango T, Dlangalala M, Mathavha MT, Molelekoa T, Kgoale DM, Korsten L. Genomic Evaluation of Multidrug-Resistant Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli from Irrigation Water and Fresh Produce in South Africa: A Cross-Sectional Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14421-14438. [PMID: 39101763 PMCID: PMC11325645 DOI: 10.1021/acs.est.4c02431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024]
Abstract
Escherichia coli, both commensal and pathogenic, can colonize plants and persist in various environments. It indicates fecal contamination in water and food and serves as a marker of antimicrobial resistance. In this context, 61 extended-spectrum β-lactamase (ESBL)-producing E. coli from irrigation water and fresh produce from previous studies were characterized using whole genome sequencing (Illumina MiSeq). The Center for Genomic Epidemiology and Galaxy platforms were used to determine antimicrobial resistance genes, virulence genes, plasmid typing, mobile genetic elements, multilocus sequence typing (MLST), and pathogenicity prediction. In total, 19 known MLST groups were detected among the 61 isolates. Phylogroup B1 (ST58) and Phylogroup E (ST9583) were the most common sequence types. The six ST10 (serotype O101:H9) isolates carried the most resistance genes, spanning eight antibiotic classes. Overall, 95.1% of the isolates carried resistance genes from three or more classes. The blaCTX-M-1, blaCTX-M-14, and blaCTX-M-15 ESBL genes were associated with mobile genetic elements, and all of the E. coli isolates showed a >90% predicted probability of being a human pathogen. This study provided novel genomic information on environmental multidrug-resistant ESBL-producing E. coli from fresh produce and irrigation water, highlighting the environment as a reservoir for multidrug-resistant strains and emphasizing the need for ongoing pathogen surveillance within a One Health context.
Collapse
Affiliation(s)
- Loandi Richter
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
- Department
of Science and Innovation, National Research
Foundation Centre of Excellence in Food Security, Bellville 7535, South Africa
| | - Stacey Duvenage
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
- Food
and Markets Department, Natural Resources Institute, University of Greenwich, Chatham ME4 4TB, United
Kingdom
| | | | - Thabang Msimango
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
- Department
of Science and Innovation, National Research
Foundation Centre of Excellence in Food Security, Bellville 7535, South Africa
| | - Manana Dlangalala
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
| | - Muneiwa Tshidino Mathavha
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
| | - Tintswalo Molelekoa
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
| | - Degracious Moloko Kgoale
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
- Department
of Science and Innovation, National Research
Foundation Centre of Excellence in Food Security, Bellville 7535, South Africa
| | - Lise Korsten
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
- Department
of Science and Innovation, National Research
Foundation Centre of Excellence in Food Security, Bellville 7535, South Africa
| |
Collapse
|
3
|
Bogaerts B, Van den Bossche A, Verhaegen B, Delbrassinne L, Mattheus W, Nouws S, Godfroid M, Hoffman S, Roosens NHC, De Keersmaecker SCJ, Vanneste K. Closing the gap: Oxford Nanopore Technologies R10 sequencing allows comparable results to Illumina sequencing for SNP-based outbreak investigation of bacterial pathogens. J Clin Microbiol 2024; 62:e0157623. [PMID: 38441926 PMCID: PMC11077942 DOI: 10.1128/jcm.01576-23] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Whole-genome sequencing has become the method of choice for bacterial outbreak investigation, with most clinical and public health laboratories currently routinely using short-read Illumina sequencing. Recently, long-read Oxford Nanopore Technologies (ONT) sequencing has gained prominence and may offer advantages over short-read sequencing, particularly with the recent introduction of the R10 chemistry, which promises much lower error rates than the R9 chemistry. However, limited information is available on its performance for bacterial single-nucleotide polymorphism (SNP)-based outbreak investigation. We present an open-source workflow, Prokaryotic Awesome variant Calling Utility (PACU) (https://github.com/BioinformaticsPlatformWIV-ISP/PACU), for constructing SNP phylogenies using Illumina and/or ONT R9/R10 sequencing data. The workflow was evaluated using outbreak data sets of Shiga toxin-producing Escherichia coli and Listeria monocytogenes by comparing ONT R9 and R10 with Illumina data. The performance of each sequencing technology was evaluated not only separately but also by integrating samples sequenced by different technologies/chemistries into the same phylogenomic analysis. Additionally, the minimum sequencing time required to obtain accurate phylogenetic results using nanopore sequencing was evaluated. PACU allowed accurate identification of outbreak clusters for both species using all technologies/chemistries, but ONT R9 results deviated slightly more from the Illumina results. ONT R10 results showed trends very similar to Illumina, and we found that integrating data sets sequenced by either Illumina or ONT R10 for different isolates into the same analysis produced stable and highly accurate phylogenomic results. The resulting phylogenies for these two outbreaks stabilized after ~20 hours of sequencing for ONT R9 and ~8 hours for ONT R10. This study provides a proof of concept for using ONT R10, either in isolation or in combination with Illumina, for rapid and accurate bacterial SNP-based outbreak investigation.
Collapse
Affiliation(s)
- Bert Bogaerts
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | | | | | | | - Stéphanie Nouws
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Maxime Godfroid
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Stefan Hoffman
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | | | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| |
Collapse
|