1
|
Pang F, Gao Y, Zhuang Z, Li C, Zhao Y, Liu Q. Microecological mechanisms of mountainous forest cultivated ginseng growth vigor and saponin accumulation, and the characterization of bionic microbial fertilizer. Front Microbiol 2025; 16:1548481. [PMID: 40432972 PMCID: PMC12106421 DOI: 10.3389/fmicb.2025.1548481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction A study on the soil microecological mechanisms influencing the growth vigor and saponin accumulation of mountainous forest cultivated ginseng (MFCG) under various forest types. Methods Using MFCG from different forest types as experimental material, the correlation and functional analysis of MFCG growth vigor, ginseng saponin content, and soil nutrient elements in their rhizosphere were conducted to clarify the soil microecological mechanisms by which different forest types affect the growth vigor and saponin accumulation of understory ginseng. Based on these microecological mechanisms, a bionic microbial fertilizer was developed and characterized. Results The agronomic traits and saponin content (Re, Rc, Rb2, and Rb3) of MFCG in the Pinus sylvestris var. mongholica Litv. (PSV) group were significantly higher than those in the Quercus mongolica Fisch. ex Ledeb. (QMF) and Larix gmelinii (Rupr.) Kuzen (LGK) groups (p < 0.05). The total content of these four monomeric saponins in the PSV group was 35.1 and 45.56% higher than that in the QMF and LGK groups, respectively. Significant differences (p < 0.05) were observed between the PSV group and the QMF and LGK groups in terms of the rhizosphere soil microbial diversity and physicochemical indicators such as nutrient elements. The agronomic traits and saponin content of MFCG were positively correlated with chemical indicators in the rhizosphere soil, including Cu, Ca, Mg, Zn, B, Fe, Mo, Mn, Organic matter (OM), Available phosphorus (AP), Available nitrogen (AN), and Available potassium (AK). Based on the microbial diversity and nutrient elements positively correlated with MFCG in the rhizosphere soil, a bionic microbial fertilizer formula was optimized. Discussion The microecological mechanism behind the growth vigor and saponin accumulation of understory ginseng involves an increase in beneficial microorganisms and nutrient elements, along with a reduction in harmful microorganisms and detrimental elements. The bionic microbial fertilizer promoted MFCG growth and saponin accumulation while improving soil nutrient levels, bulk density, and water-holding capacity.
Collapse
Affiliation(s)
- Fengyu Pang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yugang Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Zhenqi Zhuang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Changju Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Qun Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| |
Collapse
|
2
|
Malaie S, Pourakbar L, Siavash Moghaddam S, Xiao J, Khezrnejad N. Phytoremediation of mercury-contaminated Soil by Vigna radiata L. plant in companion with bacterial and fungal biofertilizers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55549-55561. [PMID: 39231843 DOI: 10.1007/s11356-024-34910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mercury is one of the most toxic pollutants that has drawn the attention of scientists. This study investigates the phytoremediation capabilities of Vigna radiata L. in conjunction with microbial biostimulators. The inoculated seeds were cultivated in soil under controlled greenhouse conditions. The concentration of Hg, biomass, and photosynthetic pigments was investigated under amendment factor including EDTA, bacterial, fungal (Mycorrhiza and Trichoderma), biochar, and combined levels, as well as the pollution factor with three levels of HgCl2 as two factorial experiments. Results showed that Plant Growth-Promoting Microorganisms (PGPMs) influenced mercury absorption and distribution in different plant organs. Aside from biochar, all stimulators increased the plant's Hg concentration. Although EDTA greatly increased mercury accumulation in plants, it reduced biomass. Fungal and bacterial treatments increased total mercury in the plant but decreased its concentration in the leaves. The combination of bacteria and fungi resulted in the highest mercury absorption, while the biochar in combination with PGPMs produced the greatest biomass. Analysis of mercury concentration in seeds indicated that V radiata effectively prevented its contamination in seeds. The results disclosed that microbial combinations of bacteria and fungi could increase the plant's potential to cope with heavy metal pollution. This improvement is due to the different roles of these two organisms, like nitrogen fixation by bacteria and phosphorus absorption by mycorrhiza fungi. Moreover, biochar as a soil amendment and microorganism carrier was noticed. Finally, considering the plant's inherent capacity to stabilize mercury in the roots, phytostabilization with the benefit of combined levels of biochar and microorganisms can be introduced as the best approach.
Collapse
Affiliation(s)
- Shirwan Malaie
- Department of Biology, Faculty of Science, Urmia University, Urmia, 5756151818, Iran
| | - Latifeh Pourakbar
- Department of Biology, Faculty of Science, Urmia University, Urmia, 5756151818, Iran.
| | - Sina Siavash Moghaddam
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Nabi Khezrnejad
- Department of Plant Protection, Mahabad Branch, Islamic Azad University, Mahabad, Iran
| |
Collapse
|
3
|
Yang S, Han X, Li J, Luan F, Zhang S, Han D, Yang M, Chen Q, Qi Z. Oceanobacillus picturae alleviates cadmium stress and promotes growth in soybean seedlings. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134568. [PMID: 38749246 DOI: 10.1016/j.jhazmat.2024.134568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024]
Abstract
Cadmium (Cd) is a heavy metal that significantly impacts human health and the environment. Microorganisms play a crucial role in reducing heavy metal stress in plants; however, the mechanisms by which microorganisms enhance plant tolerance to Cd stress and the interplay between plants and microorganisms under such stress remain unclear. In this study, Oceanobacillus picturae (O. picturae) was isolated for interaction with soybean seedlings under Cd stress. Results indicated that Cd treatment alone markedly inhibited soybean seedling growth. Conversely, inoculation with O. picturae significantly improved growth indices such as plant height, root length, and fresh weight, while also promoting recovery in soil physiological indicators and pH. Metabolomic and transcriptomic analyses identified 157 genes related to aspartic acid, cysteine, and flavonoid biosynthesis pathways. Sixty-three microbial species were significantly associated with metabolites in these pathways, including pathogenic, adversity-resistant, and bioconductive bacteria. This research experimentally demonstrates, for the first time, the growth-promoting effect of the O. picturae strain on soybean seedlings under non-stress conditions. It also highlights its role in enhancing root growth and reducing Cd accumulation in the roots under Cd stress. Additionally, through the utilization of untargeted metabolomics, metagenomics, and transcriptomics for a multi-omics analysis, we investigated the impact of O. picturae on the soil microbiome and its correlation with differential gene expression in plants. This innovative approach unveils the molecular mechanisms underlying O. picturae's promotion of root growth and adaptation to Cd stress.
Collapse
Affiliation(s)
- Shangjun Yang
- National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Han
- National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jun Li
- National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Feng Luan
- College of Engineering, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163000, China
| | - Shuli Zhang
- Wuchang Branch of Heilongjiang Academy of Agricultural Sciences, Wuchang, Heilongjiang 150229, People's Republic of China
| | - Dezhi Han
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, China
| | - Mingliang Yang
- National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingshan Chen
- National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhaoming Qi
- National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
4
|
Kumar N, Singh H, Giri K, Kumar A, Joshi A, Yadav S, Singh R, Bisht S, Kumari R, Jeena N, Khairakpam R, Mishra G. Physiological and molecular insights into the allelopathic effects on agroecosystems under changing environmental conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:417-433. [PMID: 38633277 PMCID: PMC11018569 DOI: 10.1007/s12298-024-01440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/12/2024] [Accepted: 03/16/2024] [Indexed: 04/19/2024]
Abstract
Allelopathy is a natural phenomenon of competing and interfering with other plants or microbial growth by synthesizing and releasing the bioactive compounds of plant or microbial origin known as allelochemicals. This is a sub-discipline of chemical ecology concerned with the effects of bioactive compounds produced by plants or microorganisms on the growth, development and distribution of other plants and microorganisms in natural communities or agricultural systems. Allelochemicals have a direct or indirect harmful effect on one plant by others, especially on the development, survivability, growth, and reproduction of species through the production of chemical inhibitors released into the environment. Cultivation systems that take advantage of allelopathic plants' stimulatory/inhibitory effects on plant growth and development while avoiding allelopathic autotoxicity is critical for long-term agricultural development. Allelopathy is one element that defines plant relationships and is involved in weed management, crop protection, and microbial contact. Besides, the allelopathic phenomenon has also been reported in the forest ecosystem; however, its presence depends on the forest type and the surrounding environment. In the present article, major aspects addressed are (1) literature review on the impacts of allelopathy in agroecosystems and underpinning the research gaps, (2) chemical, physiological, and ecological mechanisms of allelopathy, (3) genetic manipulations, plant defense, economic benefits, fate, prospects and challenges of allelopathy. The literature search and consolidation efforts in this article shall pave the way for future research on the potential application of allelopathic interactions across various ecosystems.
Collapse
Affiliation(s)
- Narendra Kumar
- Forest Research Institute, Dehradun, 248006 India
- Present Address: College of Agriculture, Central Agriculture University (I), Kyrdemkulai, Meghalaya, India
| | - Hukum Singh
- Forest Research Institute, Dehradun, 248006 India
| | - Krishna Giri
- Indian Council of Forestry Research and Education, Dehradun, 248006 India
| | - Amit Kumar
- Department of Forestry, North Eastern Hill University, Tura Campus, Tura, 794002 India
| | - Amit Joshi
- Department of Biochemistry, Kalinga University, Naya-Raipur, Chhattisgarh 492101 India
| | | | - Ranjeet Singh
- G.B. Pant National Institute of Himalayan Environment, Itanagar, Arunchal Pradesh, India
| | - Sarita Bisht
- Forest Research Institute, Dehradun, 248006 India
| | - Rama Kumari
- Forest Research Institute, Dehradun, 248006 India
| | - Neha Jeena
- Department of Microbiology, Central University, Rajasthan, 305817 India
| | - Rowndel Khairakpam
- School of Agriculture, Graphic Era Hill University, Dehradun, 248001 India
| | - Gaurav Mishra
- Indian Council of Forestry Research and Education, Dehradun, 248006 India
| |
Collapse
|