1
|
Akay S, Nazim M, Foroughian R, Kristensen CK, Higazy D, Posselt D, Ciofu O, Yaghmur A. Liquid crystalline coatings loaded with colistin for preventing development of biofilms on orthopedic implants. J Colloid Interface Sci 2025; 687:630-642. [PMID: 39983390 DOI: 10.1016/j.jcis.2025.02.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
The current antibacterial strategies focus on antibiotic therapy and extensive hygienic measures during orthopedic surgery. However, potential development of implant-associated infections remains a persistent clinical challenge. There is, therefore, a growing interest in introducing innovative safe antibacterial strategies for preventing and combating biofilm development on implants. Antibacterial coatings, particularly, are attractive for local delivery of antibacterial agents. We aim in this proof-of-concept study at introducing a novel and translatable implant coating approach, focusing on directed assembly of inverse non-lamellar lyotropic liquid crystalline (LLC) nanostructures on implants for prevention of initial bacterial attachment and biofilm formation through local delivery of the widely used cationic antibiotic colistin (COL). On exposure of dry lipid films deposited on model implants to aqueous solutions of COL prepared at different COL concentrations, a set of LLC coatings based on a commercial distilled monoglyceride product (or glycerol monooleate) were produced. In addition to small-angle X-ray scattering (SAXS) characterization investigations, in vitro studies were conducted for evaluating the antibacterial and antibiofilm properties of the LLC coatings against the Gram-negative bacteria Pseudomonas aeruginosa. The SAXS analysis indicated that all samples are inverse bicontinuous cubic Pn3m phases. Significant COL's antibacterial activity and efficient protection against bacterial adhesion were demonstrated on coating model implants with LLC surface films produced by using aqueous solutions containing COL at concentrations of 50 and 500 µg/mL. On exposure to serum, the detected structural alterations and changes in COL's antibacterial activity are also discussed. This study also highlights the implications of LLC self-assemblies for designing nanostructural coatings on orthopedic implants, which can prevent implant-associated biofilm infections through local delivery of antibacterial agents.
Collapse
Affiliation(s)
- Seref Akay
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen 2200 Copenhagen, Denmark.
| | - Manija Nazim
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen 2200 Copenhagen, Denmark
| | - Roudabeh Foroughian
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen 2200 Copenhagen, Denmark
| | | | - Doaa Higazy
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen 2200 Copenhagen, Denmark
| | - Dorthe Posselt
- IMFUFA, FRUSTMI, Department of Science and Environment, Roskilde University 4000 Roskilde, Denmark
| | - Oana Ciofu
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen 2200 Copenhagen, Denmark
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen 2200 Copenhagen, Denmark.
| |
Collapse
|
2
|
Ying D, Zhang T, Qi M, Han B, Dong B. Artificial Bone Materials for Infected Bone Defects: Advances in Antimicrobial Functions. ACS Biomater Sci Eng 2025; 11:2008-2036. [PMID: 40085817 DOI: 10.1021/acsbiomaterials.4c01940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Infected bone defects, caused by bacterial contamination following disease or injury, result in the partial loss or destruction of bone tissue. Traditional bone transplantation and other clinical approaches often fail to address the therapeutic complexities of these conditions effectively. In recent years, advanced biomaterials have attracted significant attention for their potential to enhance treatment outcomes. This review explores the pathogenic mechanisms underlying infected bone defects, including biofilm formation and bacterial internalization into bone cells, which allow bacteria to evade the host immune system. To control bacterial infection and facilitate bone repair, we focus on antibacterial materials for bone regeneration. A detailed introduction is given on intrinsically antibacterial materials (e.g., metal alloys, oxide materials, carbon-based materials, hydroxyapatite, chitosan, and Sericin). The antibacterial functionality of bone repair materials can be enhanced through strategies such as the incorporation of antimicrobial ions, surface modification, and the combined use of multiple materials to treat infected bone defects. Key innovations discussed include biomaterials that release therapeutic agents, functional contact biomaterials, and bioresponsive materials, which collectively enhance antibacterial efficacy. Research on the clinical translation of antimicrobial bone materials has also facilitated their practical application in infection prevention and bone healing. In conclusion, advancements in biomaterials provide promising pathways for developing more biocompatible, effective, and personalized therapies to reconstruct infected bone defects.
Collapse
Affiliation(s)
- Di Ying
- Department of Oral Geriatrics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Tianshou Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Manlin Qi
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Bing Han
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Su H, Jia F, Tian Z, Hu X, Yang H, Li J, Han P, Zhang X, Zhang X, Huang X, Wu Z, Huang Y. Methacryloylated chitosan hydrogel-mediated polyphenol-Ga/hUCMSC-Exo release platform: Possessing antibacterial, anti-inflammatory, and osteogenic capabilities. Int J Biol Macromol 2025; 309:142893. [PMID: 40203917 DOI: 10.1016/j.ijbiomac.2025.142893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/30/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Bacterial infections and excessive inflammation frequently arise during titanium-based bone repair endeavors and necessitate intervention. In this study, a methacrylated chitosan (CS-MA) hydrogel encapsulating human umbilical cord mesenchymal stem cell-derived exosomes (Exos) was meticulously coated onto the surface of a metal phenolic network (TA-Ga, composed of tannic acid and Ga3+), thereby constructing a multifunctional coating of TA-Ga/CS-MA@Exo with pH-responsiveness on the titanium surface. The coating exhibited commendable hydrophilicity, corrosion resistance, and blood compatibility. Leveraging the antimicrobial attributes of Ga3+, this coating exhibited inhibitory rates of (84.66 ± 0.001)% against S. aureus and (67.17 ± 0.02)% against E. coli. Moreover, the coating was capable of modulating the polarization of RAW264.7 cells towards the M2 phenotype, effectively reconfiguring the local anti-inflammatory microenvironment. Concurrently, the coating also significantly facilitated HUVEC migration, lumen formation, and the expression of vascularizing growth factors. Interestingly, the coating significantly enhanced MC3T3-E1 differentiation towards osteoblasts, where the expression level of the key osteogenic gene RUNX2 was increased by approximately 2.94-fold. In vivo, the coating also manifested ideal antimicrobial, anti-inflammatory, angiogenic, and bone repair capabilities, holistically satisfying the intricate demands of infectious bone repair. In conclusion, TA-Ga/CS-MA@Exo furnishes an efficacious and comprehensive resolution for infected bone repair and harbors substantial potential for clinical application.
Collapse
Affiliation(s)
- Hui Su
- College of Lab Medicine, Life Science Research Centre, Key Laboratory of Biomedical Materials of Zhangjiakou, Hebei North University, Zhangjiakou 075000, China
| | - Fengzhen Jia
- College of Lab Medicine, Life Science Research Centre, Key Laboratory of Biomedical Materials of Zhangjiakou, Hebei North University, Zhangjiakou 075000, China
| | - Zitong Tian
- College of Lab Medicine, Life Science Research Centre, Key Laboratory of Biomedical Materials of Zhangjiakou, Hebei North University, Zhangjiakou 075000, China
| | - Xinyi Hu
- College of Lab Medicine, Life Science Research Centre, Key Laboratory of Biomedical Materials of Zhangjiakou, Hebei North University, Zhangjiakou 075000, China
| | - Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiamin Li
- College of Lab Medicine, Life Science Research Centre, Key Laboratory of Biomedical Materials of Zhangjiakou, Hebei North University, Zhangjiakou 075000, China
| | - Pengde Han
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xiaojun Zhang
- School of Medicine, Northwest University, Xi'an 710069, China
| | - Xiong Zhang
- Zhangjiakou Municipal Water Supply Co., Ltd., Zhangjiakou 075000, China
| | - Xiao Huang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China.
| | - Zongze Wu
- Shenzhen Yakin Biotechnology Co., Shenzhen 518000, China.
| | - Yong Huang
- College of Lab Medicine, Life Science Research Centre, Key Laboratory of Biomedical Materials of Zhangjiakou, Hebei North University, Zhangjiakou 075000, China.
| |
Collapse
|
4
|
Zhou YG, Li SK, Xue Y, Fan B, Gao QM, Zhan LW, Liu RT, Li YF, Sun RL, Tian YZ. Diels-Alder reaction in hydrogel synthesis: Mechanisms and functional aspects. J Biomater Appl 2025; 39:828-839. [PMID: 39668782 DOI: 10.1177/08853282241306245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The Diels-Alder reaction, a classical (4+2) cycloaddition process, holds significant standing within the realms of organic synthesis and polymer chemistry, frequently employed in areas such as pharmaceutical production and material science. Recently, hydrogels constructed via Diels-Alder reactions have garnered considerable attention from researchers. This review aims to summarize the advancements in utilizing the Diels-Alder reaction for hydrogel synthesis, exploring its impact on structural design, functionalization, and application domains. Initially, the fundamental principles of the Diels-Alder reaction are introduced alongside an examination of its benefits and characteristics in hydrogel fabrication. Subsequently, applications of Diels-Alder-generated hydrogels in biomedicine, smart responsive materials, drug delivery systems, among other fields, are comprehensively reviewed. Challenges and limitations encountered during hydrogel synthesis using this reaction are also discussed. Finally, prospective research directions and future prospects of Diels-Alder reactions in hydrogel synthesis are contemplated.
Collapse
Affiliation(s)
- Yi Gui Zhou
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Song Kai Li
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Yun Xue
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Bo Fan
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Qiu Ming Gao
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Long Wen Zhan
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Rui Tang Liu
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Yun Fei Li
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Rui Long Sun
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Yong Zheng Tian
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| |
Collapse
|
5
|
Hojda S, Biegun-Żurowska M, Skórkowska A, Klesiewicz K, Ziąbka M. A Weapon Against Implant-Associated Infections: Antibacterial and Antibiofilm Potential of Biomaterials with Titanium Nitride and Titanium Nitride-Silver Nanoparticle Electrophoretic Deposition Coatings. Int J Mol Sci 2025; 26:1646. [PMID: 40004110 PMCID: PMC11855060 DOI: 10.3390/ijms26041646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Implant-associated infections are a frequent complication of surgeries involving biomaterial implants. Staphylococcus and Enterococcus species are the leading causes of infections linked to bone-anchored and joint implants. To address this challenge, developing antibacterial coatings to prevent bacterial attachment and biofilm formation on biomaterials is critical. This study aimed to evaluate the antibacterial and antibiofilm properties of two biomaterial coatings: titanium nitride (TiN) and titanium nitride with silver nanoparticles (TiN/Ag). Antibacterial activity was tested against common biofilm-forming pathogens, including Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium. The results demonstrated that both coatings significantly reduced bacterial cell counts, with the TiN/Ag coating showing superior performance due to the addition of silver nanoparticles. This enhancement was particularly effective in reducing biofilm formation across all the tested strains, with the most pronounced effects observed for E. faecium and E. faecalis. The silver nanoparticles synergistically improved the antibiofilm properties of the TiN coating, efficiently disrupting biofilm integrity and reducing bacterial adhesion. By reducing bacterial attachment and biofilm formation on biomaterial surfaces, TiN/Ag coatings offer a promising strategy to minimize complications associated with biomaterial implants. These findings highlight the potential of TiN and TiN/Ag coatings for medical applications.
Collapse
Affiliation(s)
- Sandra Hojda
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland;
| | - Maria Biegun-Żurowska
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Kraków, Poland;
| | - Alicja Skórkowska
- BioImaging Laboratory, Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, 30-688 Kraków, Poland;
| | - Karolina Klesiewicz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland;
| | - Magdalena Ziąbka
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Kraków, Poland;
| |
Collapse
|
6
|
Tang K, Wang J, Pei X, Zhu Z, Liu J, Wan Q, Zhang X. Flexible coatings based on hydrogel to enhance the biointerface of biomedical implants. Adv Colloid Interface Sci 2025; 335:103358. [PMID: 39591835 DOI: 10.1016/j.cis.2024.103358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
The use of biomedical implants in surgical techniques promotes the restoration of lost tissue or organ physiological functions in the body. The interface between different materials determines their interactions and ultimately affects the physicochemical properties of biomedical implants. After implantation, the biointerface plays a crucial role in determining the biocompatibility and functionality of biomedical implants. Surface modification of biomaterials by developing novel biomaterials like various flexible coatings to meet the requirements of biointerfaces, such as mechanical performance, compatibility safety, and biological activities, can improve material-biological interactions by maintaining its original volumetric characteristics. Hydrogels possess excellent plasticity, biodegradability, biocompatibility, and extracellular-matrix-like properties, making them widely used in the biomedical field. Moreover, due to their unique three-dimensional crosslinked hydrophilic network, hydrogels can encapsulate a variety of materials, such as small molecules, polymers, and particle. In recent years, it has been proved that coating biomedical implant materials with flexible hydrogels can optimize the biointerface and holds vast potential for implant surface modification. In this review, we first discussed the potential requirements of the biointerface on the surface of implantable materials in both in vitro and in vivo biological microenvironments. Based on these comprehensive reviews, we also introduced the potential applications of hydrogels in both in vitro and in vivo settings. Finally, this review focused on the challenges faced by the biointerface of implantable materials constructed based on hydrogels and proposed future approaches to inspire researchers with new ideas.
Collapse
Affiliation(s)
- Kun Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiang Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiayi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
7
|
Negi A, Verma A, Garg M, Goswami K, Mishra V, Singh AK, Agrawal G, Murab S. Osteogenic citric acid linked chitosan coating of 3D-printed PLA scaffolds for preventing implant-associated infections. Int J Biol Macromol 2024; 282:136968. [PMID: 39490474 DOI: 10.1016/j.ijbiomac.2024.136968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
>25 % of the patients who receive orthopedic implants have been reported with implant-associated osteomyelitis, which can result in inflammation, osteolysis, and aseptic loosening of implants. Current treatment methods doesn't ensure defect healing and prevention from reinfection. Thermoplastic-based 3D-printed scaffolds offer a bioresorbable, biocompatible, and mechanical strong implant system. However, the hydrophobicity and bio-inertness of these polymers prevent their use in clinics. In this study, we developed dual functionalized scaffolds with osteogenic and antibacterial properties by immobilizing citric acid-linked chitosan on oxygen plasma etched 3D-printed PLA scaffolds through an EDC-NHS coupling reaction. Acellular mineralization of these scaffolds in DMEM demonstrated the deposition of crystalline hydroxyapatite. In addition, the antibacterial properties of these surface-modified scaffolds have been determined against E. coli and S. aureus, where the citric-linked chitosan biofunctionalized 3D-printed PLA scaffolds showed significantly higher antibacterial activity in comparison to oxygen-etched PLA and PLA scaffolds due to the synergistic effect of citric acid and chitosan functionalities. MG-63 cells exhibited increased proliferation and osteogenic activity on the modified scaffolds compared to the PLA and OP-PLA. These 3D-printed scaffolds, coated with citric-linked chitosan, can be a potential solution to orthopedic complications such as critical-sized bone defects and implant-associated osteomyelitis.
Collapse
Affiliation(s)
- Ankita Negi
- School of Biosciences & Bioengineering, IIT Mandi, HP, India
| | - Aakash Verma
- School of Biosciences & Bioengineering, IIT Mandi, HP, India
| | - Megha Garg
- School of Chemical Sciences, IIT Mandi, HP, India
| | | | - Vedante Mishra
- School of Biosciences & Bioengineering, IIT Mandi, HP, India
| | - Arun Kumar Singh
- Department of Electronics and Communications Engineering, Punjab Engineering College, Chandigarh, India
| | - Garima Agrawal
- School of Chemical Sciences, IIT Mandi, HP, India; Indian Knowledge System and Mental Health Applications Centre, IIT Mandi, HP, India; Advanced Materials Research Centre, IIT Mandi, HP, India; Technology Innovation Hub in Human-Computer Interaction (iHub), HP, India.
| | - Sumit Murab
- School of Biosciences & Bioengineering, IIT Mandi, HP, India; Indian Knowledge System and Mental Health Applications Centre, IIT Mandi, HP, India; BioX Centre, IIT Mandi, HP, India; Advanced Materials Research Centre, IIT Mandi, HP, India; Technology Innovation Hub in Human-Computer Interaction (iHub), HP, India.
| |
Collapse
|
8
|
Garg D, Kumar D, Paliwal S, Pinnaka AK, Sachdev A, Matai I. Self-adhesive poly-l-lysine/tannic acid hybrid hydrogel for synergistic antibacterial activity against biofilms. Int J Biol Macromol 2024; 278:134961. [PMID: 39179081 DOI: 10.1016/j.ijbiomac.2024.134961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Biomedical implants are crucial for enhancing various human physiological functions. However, they are susceptible to microbial contamination after implantation, posing a risk of implant failure. To address this issue, hydrogel-based coatings are used, but achieving both effective antibacterial properties and stable adhesion remains challenging. This study introduces a hybrid hydrogel network made from Tannic Acid (TA) and Poly-l-Lysine (PLL), cross-linked through ionic and hydrogen bonds, which imparts adhesive and anti-infective properties. The physicochemical analysis revealed that the hydrogels exhibited significant porosity, favorable mechanical characteristics, and demonstrated in vitro enzymatic biodegradation. Moreover, the hydrogels demonstrated adhesion to various substrates, including Ti alloy with an adhesive strength of 42.5 kPa, and retained their integrity even after immersion in water for a minimum of 10 days. The modified Ti surfaces significantly reduced protein adsorption (∼70 %), indicating antifouling properties. The hydrogels prevented bacterial adhesion on titanium surfaces through a "contact-kill" mode of action and inhibited biofilm formation by around 94.5 % for Staphylococcus aureus and 90.8 % for Pseudomonas aeruginosa. The modified Ti retained biofilm inhibitory effects for at least six days without significant performance decline. In vitro cytotoxicity assay confirmed the biocompatibility of the hydrogels with NIH3T3 cells. Overall, these results highlight the competence of hybrid hydrogels as effective coatings for Ti implants, offering strong adhesion and biofilm prevention to mitigate implant-related infections.
Collapse
Affiliation(s)
- Deepa Garg
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Deepak Kumar
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Sakshi Paliwal
- CSIR - Institute of Microbial Technology, Chandigarh 160036, India
| | | | - Abhay Sachdev
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India.
| | - Ishita Matai
- Department of Biotechnology, Amity University Punjab, Mohali 140306, India.
| |
Collapse
|
9
|
Shen M, Dai X, Ning D, Xu H, Zhou Y, Chen G, Ren Z, Chen M, Gao M, Bao J. Integrating Pt nanoparticles with 3D Cu 2- x Se/GO nanostructure to achieve nir-enhanced peroxidizing Nano-enzymes for dynamic monitoring the level of H 2O 2 during the inflammation. Front Immunol 2024; 15:1392259. [PMID: 39086491 PMCID: PMC11288797 DOI: 10.3389/fimmu.2024.1392259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
The treatment of wound inflammation is intricately linked to the concentration of reactive oxygen species (ROS) in the wound microenvironment. Among these ROS, H2O2 serves as a critical signaling molecule and second messenger, necessitating the urgent need for its rapid real-time quantitative detection, as well as effective clearance, in the pursuit of effective wound inflammation treatment. Here, we exploited a sophisticated 3D Cu2- x Se/GO nanostructure-based nanonzymatic H2O2 electrochemical sensor, which is further decorated with evenly distributed Pt nanoparticles (Pt NPs) through electrodeposition. The obtained Cu2- x Se/GO@Pt/SPCE sensing electrode possesses a remarkable increase in specific surface derived from the three-dimensional surface constructed by GO nanosheets. Moreover, the localized surface plasma effect of the Cu2- x Se nanospheres enhances the separation of photogenerated electron-hole pairs between the interface of the Cu2- x Se NPs and the Pt NPs. This innovation enables near-infrared light-enhanced catalysis, significantly reducing the detection limit of the Cu2- x Se/GO@Pt/SPCE sensing electrode for H2O2 (from 1.45 μM to 0.53μM) under NIR light. Furthermore, this biosensor electrode enables in-situ real-time monitoring of H2O2 released by cells. The NIR-enhanced Cu2- x Se/GO@Pt/SPCE sensing electrode provide a simple-yet-effective method to achieve a detection of ROS (H2O2、-OH) with high sensitivity and efficiency. This innovation promises to revolutionize the field of wound inflammation treatment by providing clinicians with a powerful tool for accurate and rapid assessment of ROS levels, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Man Shen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xianling Dai
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dongni Ning
- College of Pharmacy and Laboratory Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hanqing Xu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yang Zhou
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Gangan Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhangyin Ren
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- College of Pharmacy and Laboratory Medicine, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
| | - Mingxuan Gao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jing Bao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
10
|
Mishra A, Aggarwal A, Khan F. Medical Device-Associated Infections Caused by Biofilm-Forming Microbial Pathogens and Controlling Strategies. Antibiotics (Basel) 2024; 13:623. [PMID: 39061305 PMCID: PMC11274200 DOI: 10.3390/antibiotics13070623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Hospital-acquired infections, also known as nosocomial infections, include bloodstream infections, surgical site infections, skin and soft tissue infections, respiratory tract infections, and urinary tract infections. According to reports, Gram-positive and Gram-negative pathogenic bacteria account for up to 70% of nosocomial infections in intensive care unit (ICU) patients. Biofilm production is a main virulence mechanism and a distinguishing feature of bacterial pathogens. Most bacterial pathogens develop biofilms at the solid-liquid and air-liquid interfaces. An essential requirement for biofilm production is the presence of a conditioning film. A conditioning film provides the first surface on which bacteria can adhere and fosters the growth of biofilms by creating a favorable environment. The conditioning film improves microbial adherence by delivering chemical signals or generating microenvironments. Microorganisms use this coating as a nutrient source. The film gathers both inorganic and organic substances from its surroundings, or these substances are generated by microbes in the film. These nutrients boost the initial growth of the adhering bacteria and facilitate biofilm formation by acting as a food source. Coatings with combined antibacterial efficacy and antifouling properties provide further benefits by preventing dead cells and debris from adhering to the surfaces. In the present review, we address numerous pathogenic microbes that form biofilms on the surfaces of biomedical devices. In addition, we explore several efficient smart antiadhesive coatings on the surfaces of biomedical device-relevant materials that manage nosocomial infections caused by biofilm-forming microbial pathogens.
Collapse
Affiliation(s)
- Akanksha Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India;
| | - Ashish Aggarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India;
| | - Fazlurrahman Khan
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
11
|
Mikziński P, Kraus K, Widelski J, Paluch E. Modern Microbiological Methods to Detect Biofilm Formation in Orthopedy and Suggestions for Antibiotic Therapy, with Particular Emphasis on Prosthetic Joint Infection (PJI). Microorganisms 2024; 12:1198. [PMID: 38930580 PMCID: PMC11205407 DOI: 10.3390/microorganisms12061198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Biofilm formation is a serious problem that relatively often causes complications in orthopedic surgery. Biofilm-forming pathogens invade implanted foreign bodies and surrounding tissues. Such a condition, if not limited at the appropriate time, often requires reoperation. This can be partially prevented by selecting an appropriate prosthesis material that prevents the development of biofilm. There are many modern techniques available to detect the formed biofilm. By applying them we can identify and visualize biofilm-forming microorganisms. The most common etiological factors associated with biofilms in orthopedics are: Staphylococcus aureus, coagulase-negative Staphylococci (CoNS), and Enterococcus spp., whereas Gram-negative bacilli and Candida spp. also deserve attention. It seems crucial, for therapeutic success, to eradicate the microorganisms able to form biofilm after the implantation of endoprostheses. Planning the effective targeted antimicrobial treatment of postoperative infections requires accurate identification of the microorganism responsible for the complications of the procedure. The modern microbiological testing techniques described in this article show the diagnostic options that can be followed to enable the implementation of effective treatment.
Collapse
Affiliation(s)
- Paweł Mikziński
- Faculty of Medicine, Wroclaw Medical University, Wyb. Pasteura 1, 50-376 Wroclaw, Poland; (P.M.); (K.K.)
| | - Karolina Kraus
- Faculty of Medicine, Wroclaw Medical University, Wyb. Pasteura 1, 50-376 Wroclaw, Poland; (P.M.); (K.K.)
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Lublin Medical University, 20-093 Lublin, Poland;
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chalubinskiego 4, 50-376 Wroclaw, Poland
| |
Collapse
|
12
|
Akay S, Yaghmur A. Recent Advances in Antibacterial Coatings to Combat Orthopedic Implant-Associated Infections. Molecules 2024; 29:1172. [PMID: 38474684 DOI: 10.3390/molecules29051172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Implant-associated infections (IAIs) represent a major health burden due to the complex structural features of biofilms and their inherent tolerance to antimicrobial agents and the immune system. Thus, the viable options to eradicate biofilms embedded on medical implants are surgical operations and long-term and repeated antibiotic courses. Recent years have witnessed a growing interest in the development of robust and reliable strategies for prevention and treatment of IAIs. In particular, it seems promising to develop materials with anti-biofouling and antibacterial properties for combating IAIs on implants. In this contribution, we exclusively focus on recent advances in the development of modified and functionalized implant surfaces for inhibiting bacterial attachment and eventually biofilm formation on orthopedic implants. Further, we highlight recent progress in the development of antibacterial coatings (including self-assembled nanocoatings) for preventing biofilm formation on orthopedic implants. Among the recently introduced approaches for development of efficient and durable antibacterial coatings, we focus on the use of safe and biocompatible materials with excellent antibacterial activities for local delivery of combinatorial antimicrobial agents for preventing and treating IAIs and overcoming antimicrobial resistance.
Collapse
Affiliation(s)
- Seref Akay
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|