1
|
Hodgkinson-Bean J, Ayala R, Jayawardena N, Rutter GL, Watson BNJ, Mayo-Muñoz D, Keal J, Fineran PC, Wolf M, Bostina M. Global structural survey of the flagellotropic myophage φTE infecting agricultural pathogen Pectobacterium atrosepticum. Nat Commun 2025; 16:3257. [PMID: 40188083 PMCID: PMC11972413 DOI: 10.1038/s41467-025-58514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
Bacteriophages offer a promising alternative to drug-based treatments due to their effectiveness and host specificity. This is particularly important in agriculture as a biocontrol agent of plant diseases. Phage engineering is facilitated by structural knowledge. However, structural information regarding bacteriophages infecting plant pathogens is limited. Here, we present the cryo-EM structure of bacteriophage φTE that infects plant pathogen Pectobacterium atrosepticum. The structure reveals a distinct neck topology compared with other myophages, where tail terminator proteins compensate for reduced connectivity between sheath subunits. A contact network between tail fibers, the sheath initiator, and baseplate wedge proteins provides insights into triggers that transduce conformational changes from the baseplate to the sheath to orchestrate contraction. We observe two distinct oligomeric states of the tape measure protein (TMP), which is six-fold in regions proximal to the N-terminus and throughout most of the tail, while three-fold at the C-terminus, indicating that the TMP may be proteolytically cleaved. Our results provide a structural atlas of the model bacteriophage φTE, enhancing future interpretation of phage host interactions in pectobacteria. We anticipate that our structure will inform rational design of biocontrol agents against plant pathogens that cause diseases such as soft rot and blackleg disease in potatoes.
Collapse
Affiliation(s)
- James Hodgkinson-Bean
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Rafael Ayala
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa, Japan
| | - Nadishka Jayawardena
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa, Japan
| | - Georgia L Rutter
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Bridget N J Watson
- Environment and Sustainability Institute, University of Exeter, Exeter, United Kingdom
| | - David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - James Keal
- School of Physical Sciences, University of Adelaide, Adelaide, Australia
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Matthias Wolf
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa, Japan.
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
2
|
Supina BSI, McCutcheon JG, Peskett SR, Stothard P, Dennis JJ. A flagella-dependent Burkholderia jumbo phage controls rice seedling rot and steers Burkholderia glumae toward reduced virulence in rice seedlings. mBio 2025; 16:e0281424. [PMID: 39868782 PMCID: PMC11898562 DOI: 10.1128/mbio.02814-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Bacteriophages (phages) are being investigated as potential biocontrol agents for the suppression of bacterial diseases in cultivated crops. Jumbo bacteriophages, which possess genomic DNA larger than 200 kbp, generally have a broader host range than other phages and therefore would be useful as biocontrol agents against a wide range of bacterial strains. Thus, the characterization of novel jumbo phages specific for agricultural pathogens would be of importance for the development of phage biocontrol strategies. Herein, we demonstrate that phage S13 requires Burkholderia glumae flagella for its attachment and infection and that loss of B. glumae flagella prevents S13 cellular lysis. As flagella is a known virulence factor, loss of flagella results in a surviving population of B. glumae with reduced virulence. Further experimentation demonstrates that phage S13 can protect rice plants from B. glumae-sponsored destruction in a rice seedling model of infection.IMPORTANCEBacterial plant pathogens threaten many major food crops and inflict large agricultural losses worldwide. B. glumae is a bacterial plant pathogen that causes diseases such as rot, wilt, and blight in several food major crops including rice, tomato, hot pepper, and eggplant. B. glumae infects rice during all developmental stages, causing diseases such as rice seedling rot and bacterial panicle blight (BPB). The B. glumae incidence of rice plant infection is predicted to increase with warming global temperatures, and several different control strategies targeting B. glumae are being explored. These include chemical and antibiotic soil amendment, microbiome manipulation, and the use of partially resistant rice cultivars. However, despite rice growth amelioration, the treatment options for B. glumae plant infections remain limited to cultural practices. Alternatively, phage biocontrol represents a promising new method for eliminating B. glumae from crop soils and improving rice yields.
Collapse
Affiliation(s)
- Brittany S. I. Supina
- Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jaclyn G. McCutcheon
- Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sydney R. Peskett
- Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Stothard
- Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan J. Dennis
- Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Zampara A, Gencay YE, Brøndsted L, Sørensen MCH. Campycins are novel broad-spectrum antibacterials killing Campylobacter jejuni. Appl Microbiol Biotechnol 2024; 108:484. [PMID: 39382702 PMCID: PMC11464564 DOI: 10.1007/s00253-024-13317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 10/10/2024]
Abstract
Pyocins are high molecular weight bacteriocins produced by Pseudomonas aeruginosa that can be retargeted to new bacterial species by exchanging the pyocin tail fibers with bacteriophage receptor binding proteins (RBPs). Here, we develop retargeted pyocins called campycins as new antibacterials to precisely and effectively kill the major foodborne pathogen Campylobacter jejuni. We used two diverse RBPs (H-fibers) encoded by CJIE1 prophages found in the genomes of C. jejuni strains CAMSA2147 and RM1221 to construct campycin 1 and campycin 2, respectively. Campycins 1 and 2 could target all C. jejuni strains tested due to complementary antibacterial spectra. In addition, both campycins led to more than 3 log reductions in C. jejuni counts under microaerobic conditions at 42 °C, whereas the killing efficiency was less efficient under anaerobic conditions at 5 °C. Furthermore, we discovered that both H-fibers used to construct the campycins bind to the essential major outer membrane protein (MOMP) present in all C. jejuni in a strain-specific manner. Protein sequence alignment and structural modeling suggest that the highly variable extracellular loops of MOMP form the binding sites of the diverse H-fibers. Further in silico analyses of 5000 MOMP sequences indicated that the protein falls into three major clades predicted to be targeted by either campycin 1 or campycin 2. Thus, campycins are promising antibacterials against C. jejuni and are expected to broadly target numerous strains of this human pathogen in nature and agriculture. KEY POINTS: • Campycins are engineered R-type pyocins containing H-fibers from C. jejuni prophages • Campycins reduce C. jejuni counts by >3 logs at conditions promoting growth • Campycins bind to the essential outer membrane protein MOMP in a strain-dependent way.
Collapse
Affiliation(s)
- Athina Zampara
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yilmaz Emre Gencay
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- Present Address: SNIPR Biome, Lersø Parkallé 44, 2100, Copenhagen, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
4
|
Teymouri S, Pourhajibagher M, Bahador A. A review of the fighting Acinetobacter baumannii on three fronts: antibiotics, phages, and nanoparticles. Mol Biol Rep 2024; 51:1044. [PMID: 39377967 DOI: 10.1007/s11033-024-09979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/30/2024] [Indexed: 02/06/2025]
Abstract
In the current era of antibiotic resistance, researchers are exploring alternative ways to treat bacterial infections that are resistant to multiple drugs. Acinetobacter baumannii (A. baumannii) is a bacterium that is commonly encountered in clinical settings and is known to be resistant to several drugs. Due to the increase in drug-resistant infections caused by this bacteria, there is an urgent need to investigate alternative treatment options such as phage therapy and combination therapy. Despite the success of phages in some cases, there are some limitations in their clinical application that can be overcome by combining phages with other substrates such as nanoparticles to improve their function. The integration of nanotechnology with phage therapy against A. baumannii promises to overcome antibiotic resistance. By exploiting the targeted delivery and controlled release capabilities of nanoparticles, we can enhance the therapeutic potential of phages while minimizing their limitations. Continued research in this field will undoubtedly pave the way for more effective and precise treatments against A. baumannii infections and provide hope in the fight against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Samane Teymouri
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
5
|
Ranta K, Skurnik M, Kiljunen S. fENko-Kae01 is a flagellum-specific jumbo phage infecting Klebsiella aerogenes. BMC Microbiol 2024; 24:234. [PMID: 38951769 PMCID: PMC11218385 DOI: 10.1186/s12866-024-03387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Klebsiella aerogenes is an opportunistic pathogen that causes a wide variety of infections. Due to the rising problem of antibiotic resistance, novel antibiotics and strategies to combat bacterial infections are needed. Host-specific bacteriophages are natural enemies of bacteria and can be used in phage therapy as an alternative form of treatment against bacterial infections. Jumbo phages are defined as phages with genomes larger than 200 kb. Relatively few studies have been done on jumbo phages compared to smaller phages. RESULTS A novel phage, fENko-Kae01, was isolated from a commercial phage cocktail. Genomic analysis revealed that fENko-Kae01 is a lytic jumbo phage with a 360 kb genome encoding 578 predicted genes. No highly similar phage genomes were identified and fENko-Kae01 may be a completely new genus representative. No known genes associated with lysogenic life cycle, bacterial virulence, or antibiotic resistance were identified. The phage had myovirus morphology and a narrow host range. Phage resistant bacterial mutants emerged under phage selection. Whole genome sequencing revealed that the biogenesis of the flagellum was affected in four mutants and the lack of functional flagellum was confirmed in motility assays. Furthermore, phage fENKo-Kae01 failed to adsorb on the non-motile mutants indicating that the bacterial flagellum is the phage-binding receptor. CONCLUSIONS fENko-Kae01 is a novel jumbo bacteriophage that is considered safe for phage therapy. fENko-Kae01 uses the flagellum as the phage-binding receptor and may represent a completely novel genus.
Collapse
Affiliation(s)
- Kira Ranta
- HUS Diagnostic Center, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Skurnik
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Saija Kiljunen
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Gambino M, Sørensen MCH. Flagellotropic phages: common yet diverse host interaction strategies. Curr Opin Microbiol 2024; 78:102451. [PMID: 38452595 DOI: 10.1016/j.mib.2024.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/14/2024] [Accepted: 02/10/2024] [Indexed: 03/09/2024]
Abstract
Many bacteriophages (phages) interact with flagella and rely on bacterial motility for successful infection of their hosts. Yet, limited information is available on how phages have evolved to recognize and bind both flagella and subsequent surface receptors for phage DNA injection. Here, we present an update on the current knowledge of flagellotropic phages using a few well-studied phages as examples to unravel the molecular details of bacterial host recognition. We discuss the recent advances in the role of globular exposed flagellin domains and flagella glycosylation in phage binding to the flagella. In addition, we present diverse types of surface receptors and phage components responsible for the interaction with the host. Finally, we point to questions remaining to be answered and new approaches to study this unique group of phages.
Collapse
Affiliation(s)
- Michela Gambino
- Institute of Conservation, Royal Danish Academy, Copenhagen, Denmark
| | - Martine C H Sørensen
- Section of Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|