1
|
Basra M, Miceli L, Mundra V, Stern-Harbutte A, Patel H, Haynes J, Parmar MS. Exploring the neurotoxic effects of microbial metabolites: A potential link between p-Cresol and autism spectrum disorders? Brain Res 2025; 1850:149427. [PMID: 39732158 DOI: 10.1016/j.brainres.2024.149427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a complex etiology, including genetic and environmental factors. A growing body of evidence (preclinical and clinical studies) implicates a potential role of gut microbiome dysregulation in ASD pathophysiology. This review focuses on the microbial metabolite p-Cresol, produced by certain gut bacteria such as Clostridium, and its potential role in ASD. The review summarizes studies investigating the gut microbiome composition in ASD patients, particularly the increased abundance of Clostridium species and associated gastrointestinal symptoms. The potential neurotoxic effects of p-Cresol are explored, including its influence on neurotransmitter metabolism (especially dopamine), neuroinflammation, and brain development. The mechanistic findings from the preclinical studies of p-Cresol's induction of ASD-like behaviors and its impact on the dopaminergic system are discussed. Literature studies indicated increased levels of p-Cresol in the urine of patients with ASD. This increasing evidence suggests that p-Cresol may serve as a crucial biomarker for understanding the relationship between gut microbiota and ASD, opening avenues for potential diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Mahi Basra
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Tampa Bay Campus, Clearwater, FL, United States
| | - Lauren Miceli
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Tampa Bay Campus, Clearwater, FL, United States
| | - Vatsala Mundra
- University of Texas Southwestern Medical School, Dallas, TX, United States
| | - Alison Stern-Harbutte
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Tampa Bay Campus, Clearwater, FL, United States
| | - Hemangi Patel
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Tampa Bay Campus, Clearwater, FL, United States
| | | | - Mayur S Parmar
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Tampa Bay Campus, Clearwater, FL, United States.
| |
Collapse
|
2
|
Badaras S, Starkute V, Mockus E, Ruzauskas M, Klupsaite D, Mozuriene E, Dailidaviciene J, Dauksiene A, Vadopalas L, Bartkiene E. Influence of fermented milk permeate containing antimicrobial Lactobacillus and galactooligosaccharides on growth performance and health parameters in neonatal piglets. Front Vet Sci 2025; 12:1501117. [PMID: 40051978 PMCID: PMC11884324 DOI: 10.3389/fvets.2025.1501117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/20/2025] [Indexed: 03/09/2025] Open
Abstract
The study aimed to compare the effects of fermented milk permeate (MP) containing Pediococcus pentosaceus (MPPp) and P. acidilactici (MPPa) on growth performance, plasma parameters, and the faecal microbial, metataxonomic, and physicochemical characteristics of Topigs Norsvin Yorkshire piglets. A total of 36 1-day-old piglets were divided into three groups: (i) control group (C), (ii) MPPp group, and (iii) MPPa group. The treated groups, in addition to their full-fledged combined pre-starter diet, received 25 mL of MP daily. After the experiment, piglets in the MPPa group exhibited the highest weight gain, while piglets in the MPPp group showed the highest IgM concentration. Both experimental groups demonstrated increased Lactobacillus counts in the faeces. Although the numbers of Lactobacillus and Enterobacteria increased, these microbial changes did not show a direct correlation with growth performance. The feces of MPPa piglets had a unique volatile compound profile, characterized by higher levels of butanoic acid and indole levels, which may be linked to differences in their metataxonomic profile. The MPPp group showed a greater variety of bacterial patterns compared to the control and MPPa groups. Post-experiment, the MPPa group demonstrated the highest prevalence of specific bacterial species, Parabacteroides sp. 12,306, Terrisporobacter sp. 34,393, Holdemanella sp. 36,738, and Lachnospiraceae sp. In conclusion, feeding piglets with MPPa proved beneficial for achieving better weight gain while also promoting the proliferation of specific bacteria species and contributing to a distinctive VC profile in their faeces. These findings highlight the importance of further research into the metabolic pathways underlying these observations.
Collapse
Affiliation(s)
- Sarunas Badaras
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Modestas Ruzauskas
- Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Erika Mozuriene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jurgita Dailidaviciene
- Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Agila Dauksiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Laurynas Vadopalas
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
3
|
Stepanova N. Probiotic interventions in peritoneal dialysis: A review of underlying mechanisms and therapeutic potentials. World J Nephrol 2024; 13:98719. [PMID: 39723354 PMCID: PMC11572655 DOI: 10.5527/wjn.v13.i4.98719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/18/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024] Open
Abstract
Peritoneal dialysis (PD) is a commonly used modality for kidney replacement therapy for patients with end-stage kidney disease (ESKD). PD offers many benefits, including home-based care, greater flexibility, and preservation of residual kidney function compared to in-center hemodialysis. Nonetheless, patients undergoing PD often face significant challenges, including systemic inflammation, PD-related peritonitis, metabolic disorders, and cardiovascular issues that can negatively affect their quality of life and treatment outcomes. Recent studies have demonstrated the crucial role of the gut microbiome in overall health and treatment results, supporting the hypothesis that probiotics may bring potential benefits to the general population of ESKD patients. However, specific data on probiotic use in PD patients are limited. This opinion review aims to summarize the current knowledge on the relationship between PD and the gut microbiome and offers a novel perspective by specifically exploring how probiotic interventions could improve the outcomes of PD treatment. The review also outlines some clinical data supporting the effectiveness of probiotics in patients undergoing PD and considers the difficulties and restrictions in their application. Based on the current knowledge gaps, this study seeks to explore future research directions and their implications for clinical practice.
Collapse
Affiliation(s)
- Natalia Stepanova
- Department of Nephrology and Dialysis, State Institution “O.O. Shalimov National Scientific Center of Surgery and Transplantology of the National Academy of Medical Science of Ukraine", Kyiv 03680, Ukraine
- Department of Nephrology, Medical Center “Nephrocenter”, Kyiv 03057, Ukraine
| |
Collapse
|
4
|
FitzGerald G. Metabolomic Response to Non-Steroidal Anti-Inflammatory Drugs. RESEARCH SQUARE 2024:rs.3.rs-5530702. [PMID: 39711561 PMCID: PMC11661377 DOI: 10.21203/rs.3.rs-5530702/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are popular choices for the mitigation of pain and inflammation; however, they are accompanied by side effects in the gastrointestinal and cardiovascular systems. We compared the effects of naproxen, a traditional NSAID, and celecoxib, a cyclooxygenase - 2 (Cox-2) inhibitor, in humans. Our findings showed a decrease in tryptophan and kynurenine levels in plasma of volunteers treated with naproxen. We further validated this result in mice. Additionally, we find that the depression of tryptophan was independent of both Cox-1 and Cox-2 inhibition, but rather was due to the displacement of bound tryptophan by naproxen. Supplementation of tryptophan in naproxen-treated mice rescued fecal blood loss and inflammatory gene expression driven by IL-1β in the heart.
Collapse
|
5
|
Ghosh S, Lahens N, Barekat K, Tang SY, Theken KN, Ricciotti E, Sengupta A, Joshi R, Bushman FD, Weljie A, Grosser T, FitzGerald GA. Metabolomic Response to Non-Steroidal Anti-Inflammatory Drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625478. [PMID: 39677795 PMCID: PMC11642787 DOI: 10.1101/2024.11.26.625478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are popular choices for the mitigation of pain and inflammation; however, they are accompanied by side effects in the gastrointestinal and cardiovascular systems. We compared the effects of naproxen, a traditional NSAID, and celecoxib, a cyclooxygenase -2 (Cox-2) inhibitor, in humans. Our findings showed a decrease in tryptophan and kynurenine levels in plasma of volunteers treated with naproxen. We further validated this result in mice. Additionally, we find that the depression of tryptophan was independent of both Cox-1 and Cox-2 inhibition, but rather was due to the displacement of bound tryptophan by naproxen. Supplementation of tryptophan in naproxen-treated mice rescued fecal blood loss and inflammatory gene expression driven by IL-1β in the heart.
Collapse
Affiliation(s)
- Soumita Ghosh
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nick Lahens
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kayla Barekat
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Soon-Yew Tang
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Katherine N Theken
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Arjun Sengupta
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Robin Joshi
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Aalim Weljie
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Tilo Grosser
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Translational Pharmacology, EWL School of Medicine, Bielefeld University, Bielefeld, Germany
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Park G, Kim S, Lee W, Kim G, Shin H. Deciphering the Impact of Defecation Frequency on Gut Microbiome Composition and Diversity. Int J Mol Sci 2024; 25:4657. [PMID: 38731876 PMCID: PMC11083994 DOI: 10.3390/ijms25094657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
This study explores the impact of defecation frequency on the gut microbiome structure by analyzing fecal samples from individuals categorized by defecation frequency: infrequent (1-3 times/week, n = 4), mid-frequent (4-6 times/week, n = 7), and frequent (daily, n = 9). Utilizing 16S rRNA gene-based sequencing and LC-MS/MS metabolome profiling, significant differences in microbial diversity and community structures among the groups were observed. The infrequent group showed higher microbial diversity, with community structures significantly varying with defecation frequency, a pattern consistent across all sampling time points. The Ruminococcus genus was predominant in the infrequent group, but decreased with more frequent defecation, while the Bacteroides genus was more common in the frequent group, decreasing as defecation frequency lessened. The infrequent group demonstrated enriched biosynthesis genes for aromatic amino acids and branched-chain amino acids (BCAAs), in contrast to the frequent group, which had a higher prevalence of genes for BCAA catabolism. Metabolome analysis revealed higher levels of metabolites derived from aromatic amino acids and BCAA metabolism in the infrequent group, and lower levels of BCAA-derived metabolites in the frequent group, consistent with their predicted metagenomic functions. These findings underscore the importance of considering stool consistency/frequency in understanding the factors influencing the gut microbiome.
Collapse
Affiliation(s)
- Gwoncheol Park
- Department of Food Science & Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea; (G.P.); (S.K.); (W.L.); (G.K.)
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
- Department of Health, Nutrition & Food Sciences, College of Education, Health & Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Seongok Kim
- Department of Food Science & Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea; (G.P.); (S.K.); (W.L.); (G.K.)
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - WonJune Lee
- Department of Food Science & Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea; (G.P.); (S.K.); (W.L.); (G.K.)
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Gyungcheon Kim
- Department of Food Science & Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea; (G.P.); (S.K.); (W.L.); (G.K.)
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Hakdong Shin
- Department of Food Science & Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea; (G.P.); (S.K.); (W.L.); (G.K.)
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
7
|
Rätsep M, Kilk K, Zilmer M, Kuusik S, Kuus L, Vallas M, Gerulis O, Štšepetova J, Orav A, Songisepp E. Investigation of Effects of Novel Bifidobacterium longum ssp. longum on Gastrointestinal Microbiota and Blood Serum Parameters in a Conventional Mouse Model. Microorganisms 2024; 12:840. [PMID: 38674784 PMCID: PMC11052112 DOI: 10.3390/microorganisms12040840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Representatives of the genus Bifidobacterium are widely used as probiotics to modulate the gut microbiome and alleviate various health conditions. The action mechanisms of probiotics rely on their direct effect on the gut microbiota and the local and systemic effect of its metabolites. The main purpose of this animal experiment was to assess the biosafety of the Bifidobacterium longum strain BIOCC1719. Additional aims were to characterise the influence of the strain on the intestinal microbiota and the effect on several health parameters of the host during 15- and 30-day oral administration of the strain to mice. The strain altered the gut microbial community, thereby altering luminal short-chain fatty acid metabolism, resulting in a shift in the proportions of acetic, butyric, and propionic acids in the faeces and serum of the test group mice. Targeted metabolic profiling of serum revealed the possible ability of the strain to positively affect the hosts' amino acids and bile acids metabolism, as the cholic acid, deoxycholic acid, aspartate, and glutamate concentration were significantly higher in the test group. The tendency to increase anti-inflammatory polyamines (spermidine, putrescine) and neuroprotective 3-indolepropionic acid metabolism and to lower uremic toxins (P-cresol-SO4, indoxyl-SO4) was registered. Thus, B. longum BIOCC1719 may exert health-promoting effects on the host through modulation of the gut microbiome and the host metabolome via inducing the production of health-promoting bioactive compounds. The health effects of the strain need to be confirmed in clinical trials with human volunteers.
Collapse
Affiliation(s)
- Merle Rätsep
- BioCC OÜ, Riia St. 181A, 50411 Tartu, Estonia (L.K.); (M.V.)
| | - Kalle Kilk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411 Tartu, Estonia; (K.K.)
| | - Mihkel Zilmer
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411 Tartu, Estonia; (K.K.)
| | - Sirje Kuusik
- BioCC OÜ, Riia St. 181A, 50411 Tartu, Estonia (L.K.); (M.V.)
| | - Liina Kuus
- BioCC OÜ, Riia St. 181A, 50411 Tartu, Estonia (L.K.); (M.V.)
| | - Mirjam Vallas
- BioCC OÜ, Riia St. 181A, 50411 Tartu, Estonia (L.K.); (M.V.)
| | - Oksana Gerulis
- BioCC OÜ, Riia St. 181A, 50411 Tartu, Estonia (L.K.); (M.V.)
| | - Jelena Štšepetova
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411 Tartu, Estonia
| | - Aivar Orav
- Tartu Health Care College, Nooruse St. 5, 50411 Tartu, Estonia
| | - Epp Songisepp
- BioCC OÜ, Riia St. 181A, 50411 Tartu, Estonia (L.K.); (M.V.)
| |
Collapse
|
8
|
Khongtan S, Sivamaruthi BS, Thangaleela S, Kesika P, Bharathi M, Sirilun S, Choeisoongnern T, Peerajan S, Sittiprapaporn P, Chaiyasut C. The Influence of Probiotic Supplementation on the Obesity Indexes, Neuroinflammatory and Oxidative Stress Markers, Gut Microbial Diversity, and Working Memory in Obese Thai Children. Foods 2023; 12:3890. [PMID: 37959009 PMCID: PMC10648263 DOI: 10.3390/foods12213890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Obesity is a worldwide health problem with a complex interaction between gut microbiota and cognition. Several studies have demonstrated that probiotic treatments improve characteristics linked to obesity. The present study aimed to evaluate the effects of probiotic supplementation on the obesity indexes, inflammatory and oxidative stress markers, gut microbiota, and working memory in obese children. Ten obese children were assigned to receive the probiotics (8 × 109 CFU of Lactobacillus paracasei HII01 and Bifidobacterium animalis subsp. lactis) for 12 weeks. Demographic data were recorded. Urine and fecal samples were collected to evaluate biomarkers related to obesity and cognition. Behavioral working memory was assessed using the visual n-back test. Electroencephalography was employed to measure electrical activity during the visual n-back test. All parameters were evaluated at the baseline and after 12 weeks. The results revealed that probiotic supplementation significantly altered some gut microbial metabolites, gut microbiota, total antioxidant capacity, and neuroinflammatory markers. However, no significant changes were observed in the visual n-back test or electroencephalographic recordings after 12 weeks. In conclusion, the use of probiotics might be an alternative treatment that could improve the gut microbial ecosystem and microbial metabolites, as well as host antioxidant and neuroinflammation levels. The preliminary results indicated that further detailed prolonged studies are needed in order to determine the beneficial effects of the studied probiotics.
Collapse
Affiliation(s)
- Suchanat Khongtan
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Muruganantham Bharathi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
| | - Sasithorn Sirilun
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thiwanya Choeisoongnern
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | | | - Phakkharawat Sittiprapaporn
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
| |
Collapse
|
9
|
Mandal RK, Mandal A, Denny JE, Namazii R, John CC, Schmidt NW. Gut Bacteroides act in a microbial consortium to cause susceptibility to severe malaria. Nat Commun 2023; 14:6465. [PMID: 37833304 PMCID: PMC10575898 DOI: 10.1038/s41467-023-42235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Malaria is caused by Plasmodium species and remains a significant cause of morbidity and mortality globally. Gut bacteria can influence the severity of malaria, but the contribution of specific bacteria to the risk of severe malaria is unknown. Here, multiomics approaches demonstrate that specific species of Bacteroides are causally linked to the risk of severe malaria. Plasmodium yoelii hyperparasitemia-resistant mice gavaged with murine-isolated Bacteroides fragilis develop P. yoelii hyperparasitemia. Moreover, Bacteroides are significantly more abundant in Ugandan children with severe malarial anemia than with asymptomatic P. falciparum infection. Human isolates of Bacteroides caccae, Bacteroides uniformis, and Bacteroides ovatus were able to cause susceptibility to severe malaria in mice. While monocolonization of germ-free mice with Bacteroides alone is insufficient to cause susceptibility to hyperparasitemia, meta-analysis across multiple studies support a main role for Bacteroides in susceptibility to severe malaria. Approaches that target gut Bacteroides present an opportunity to prevent severe malaria and associated deaths.
Collapse
Affiliation(s)
- Rabindra K Mandal
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anita Mandal
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua E Denny
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Ruth Namazii
- Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nathan W Schmidt
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
10
|
Chmiel JA, Stuivenberg GA, Al KF, Akouris PP, Razvi H, Burton JP, Bjazevic J. Vitamins as regulators of calcium-containing kidney stones - new perspectives on the role of the gut microbiome. Nat Rev Urol 2023; 20:615-637. [PMID: 37161031 PMCID: PMC10169205 DOI: 10.1038/s41585-023-00768-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 05/11/2023]
Abstract
Calcium-based kidney stone disease is a highly prevalent and morbid condition, with an often complicated and multifactorial aetiology. An abundance of research on the role of specific vitamins (B6, C and D) in stone formation exists, but no consensus has been reached on how these vitamins influence stone disease. As a consequence of emerging research on the role of the gut microbiota in urolithiasis, previous notions on the contribution of these vitamins to urolithiasis are being reconsidered in the field, and investigation into previously overlooked vitamins (A, E and K) was expanded. Understanding how the microbiota influences host vitamin regulation could help to determine the role of vitamins in stone disease.
Collapse
Affiliation(s)
- John A Chmiel
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Gerrit A Stuivenberg
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Kait F Al
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Polycronis P Akouris
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Hassan Razvi
- Division of Urology, Department of Surgery, Western University, London, Ontario, Canada
| | - Jeremy P Burton
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
- Division of Urology, Department of Surgery, Western University, London, Ontario, Canada
| | - Jennifer Bjazevic
- Division of Urology, Department of Surgery, Western University, London, Ontario, Canada.
| |
Collapse
|
11
|
Katsaounou K, Yiannakou D, Nikolaou E, Brown C, Vogazianos P, Aristodimou A, Chi J, Costeas P, Agapiou A, Frangou E, Tsiaoussis G, Potamitis G, Antoniades A, Shammas C, Apidianakis Y. Fecal Microbiota and Associated Volatile Organic Compounds Distinguishing No-Adenoma from High-Risk Colon Adenoma Adults. Metabolites 2023; 13:819. [PMID: 37512526 PMCID: PMC10383435 DOI: 10.3390/metabo13070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Microbiota and the metabolites they produce within the large intestine interact with the host epithelia under the influence of a range of host-derived metabolic, immune, and homeostatic factors. This complex host-microbe interaction affects intestinal tumorigenesis, but established microbial or metabolite profiles predicting colorectal cancer (CRC) risk are missing. Here, we aimed to identify fecal bacteria, volatile organic compounds (VOC), and their associations that distinguish healthy (non-adenoma, NA) from CRC prone (high-risk adenoma, HRA) individuals. Analyzing fecal samples obtained from 117 participants ≥15 days past routine colonoscopy, we highlight the higher abundance of Proteobacteria and Parabacteroides distasonis, and the lower abundance of Lachnospiraceae species, Roseburia faecis, Blautia luti, Fusicatenibacter saccharivorans, Eubacterium rectale, and Phascolarctobacterium faecium in the samples of HRA individuals. Volatolomic analysis of samples from 28 participants revealed a higher concentration of five compounds in the feces of HRA individuals, isobutyric acid, methyl butyrate, methyl propionate, 2-hexanone, and 2-pentanone. We used binomial logistic regression modeling, revealing 68 and 96 fecal bacteria-VOC associations at the family and genus level, respectively, that distinguish NA from HRA endpoints. For example, isobutyric acid associations with Lachnospiraceae incertae sedis and Bacteroides genera exhibit positive and negative regression lines for NA and HRA endpoints, respectively. However, the same chemical associates with Coprococcus and Colinsella genera exhibit the reverse regression line trends. Thus, fecal microbiota and VOC profiles and their associations in NA versus HRA individuals indicate the significance of multiple levels of analysis towards the identification of testable CRC risk biomarkers.
Collapse
Affiliation(s)
- Kyriaki Katsaounou
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus
| | | | | | | | | | | | | | | | - Agapios Agapiou
- Department of Chemistry, University of Cyprus, Nicosia 2109, Cyprus
| | | | | | | | | | | | - Yiorgos Apidianakis
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus
| |
Collapse
|
12
|
Plaza-Diaz J, Álvarez-Mercado AI. The Interplay between Microbiota and Chemotherapy-Derived Metabolites in Breast Cancer. Metabolites 2023; 13:703. [PMID: 37367861 PMCID: PMC10301694 DOI: 10.3390/metabo13060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The most common cancer in women is breast cancer, which is also the second leading cause of death in this group. It is, however, important to note that some women will develop or will not develop breast cancer regardless of whether certain known risk factors are present. On the other hand, certain compounds are produced by bacteria in the gut, such as short-chain fatty acids, secondary bile acids, and other metabolites that may be linked to breast cancer development and mediate the chemotherapy response. Modeling the microbiota through dietary intervention and identifying metabolites directly associated with breast cancer and its complications may be useful to identify actionable targets and improve the effect of antiangiogenic therapies. Metabolomics is therefore a complementary approach to metagenomics for this purpose. As a result of the combination of both techniques, a better understanding of molecular biology and oncogenesis can be obtained. This article reviews recent literature about the influence of bacterial metabolites and chemotherapy metabolites in breast cancer patients, as well as the influence of diet.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
| |
Collapse
|