1
|
Ghosh S, Clore GM. Decoding chaperone complexes: Insights from NMR spectroscopy. BIOPHYSICS REVIEWS 2024; 5:041308. [PMID: 39679202 PMCID: PMC11637561 DOI: 10.1063/5.0233299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Molecular chaperones play a key role in protein homeostasis by preventing misfolding and aggregation, assisting in proper protein folding, and sometimes even disaggregating formed aggregates. Chaperones achieve this through a range of transient weak protein-protein interactions, which are difficult to study using traditional structural and biophysical techniques. Nuclear magnetic resonance (NMR) spectroscopy, however, is well-suited for studying such dynamic states and interactions. A wide range of NMR experiments have been particularly valuable in understanding the mechanisms of chaperone function, as they can characterize disordered protein structures, detect weak and nonspecific interactions involving sparsely populated states, and probe the conformational dynamics of proteins and their complexes. Recent advances in NMR have significantly enhanced our knowledge of chaperone mechanisms, especially chaperone-client interactions, despite the inherent challenges posed by the flexibility and complexity of these systems. In this review, we highlight contributions of NMR to the chaperone field, focusing on the work carried out in our laboratory, which have provided insights into how chaperones maintain function within the cellular environment and interact with various protein substrates.
Collapse
Affiliation(s)
- Shreya Ghosh
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
2
|
Sun C, Slade L, Mbonu P, Ordner H, Mitchell C, Mitchell M, Liang FC. Membrane protein chaperone and sodium chloride modulate the kinetics and morphology of amyloid beta aggregation. FEBS J 2024; 291:158-176. [PMID: 37786925 DOI: 10.1111/febs.16967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/04/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Protein aggregation is a biological phenomenon caused by the accumulation of misfolded proteins. Amyloid beta (Aβ) peptides are derived from the cleavage of a larger membrane protein molecule and accumulate to form plaques extracellularly. According to the amyloid hypothesis, accumulation of Aβ aggregates in the brain is primarily responsible for the pathogenesis of Alzheimer's disease (AD). Therefore, the disassembly of Aβ aggregates may provide opportunities for alleviating or treating AD. Here, we show that the novel protein targeting machinery from chloroplast, chloroplast signal recognition particle 43 (cpSRP43), is an ATP-independent membrane protein chaperone that can both prevent and reverse Aβ aggregation effectively. Using of thioflavin T dye, we obtained the aggregation kinetics of Aβ aggregation and determined that the chaperone prevents Aβ aggregation in a concentration-dependent manner. Size exclusion chromatography and sedimentation assays showed that 10-fold excess of cpSRP43 can keep Aβ in the soluble monomeric form. Electron microscopy showed that the fibril structure was disrupted in the presence of this chaperone. Importantly, cpSRP43 utilizes the binding energy to actively remodel the preformed Aβ aggregates without assistance by a co-chaperone and ATP, emphasizing its unique function among protein chaperones. Moreover, when sodium chloride concentration is higher than 25 mm, the Aβ aggregation rate increases drastically to form tightly associated aggregates and generate more oligomers. Our results demonstrate that the presence of cpSRP43 and low NaCl levels inhibit or retard Aβ peptide aggregation, potentially opening new avenues to strategically develop an effective treatment for AD.
Collapse
Affiliation(s)
- Christopher Sun
- Department of Biology, Midwestern State University, Wichita Falls, TX, USA
| | - Leah Slade
- Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA
| | - Prisca Mbonu
- Department of Biology, Midwestern State University, Wichita Falls, TX, USA
| | - Hunter Ordner
- Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA
| | - Connor Mitchell
- Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA
| | - Matthew Mitchell
- Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA
| | - Fu-Cheng Liang
- Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA
| |
Collapse
|
3
|
Hao P, Wu S, Zhang X, Gou C, Wang Y, Wang L, Zhu Y, Basang W, Gao Y. Characterization and Degradation Pathways of Microbacterium resistens MZT7, A Novel 17 β-Estradiol-Degrading Bacterium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191711097. [PMID: 36078812 PMCID: PMC9518027 DOI: 10.3390/ijerph191711097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 05/12/2023]
Abstract
Due to the ecotoxicity of 17β-estradiol (E2), residual E2 in the environment poses potential risks to human and animal health and ecosystems. Biodegradation is considered one of the most effective strategies to remove E2 from the environment. Here, a novel, efficient E2-degrading bacterial strain Microbacterium resistens MZT7 was isolated from activated sludge and characterized. The genome of strain MZT7 contained 4,011,347 bp nucleotides with 71.26% G + C content and 3785 coding genes. There was 86.7% transformation efficiency of 10 mg/L E2 by strain MZT7 after incubation for 5 d at optimal temperature (30 °C) and pH (7.0). This strain was highly tolerant to ranges in pH (5.0-11.0), temperature (20-40 °C), and salinity (2-8%). Adding sources of carbon (glucose, maltose, sucrose, or lactose) or nitrogen sources (urea, peptone, or beef extract) promoted the degradation of E2 by strain MZT7. However, when yeast extract was added as a nitrogen source, the degradation efficiency of E2 was inhibited. Metabolites were analyzed by LC-MS and three metabolic pathways of E2 degradation were proposed. Further, the intermediates dehydroepiandrosterone and androsta-1,4-diene-3,17-dione were detected, as well as identification of kshB and fadD3 genes by KEGG, confirming one E2 degradation pathway. This study provided some insights into E2 biodegradation.
Collapse
Affiliation(s)
- Peng Hao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Sicheng Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiqing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Changlong Gou
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Yuqiong Wang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Lixia Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850009, China
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850009, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Correspondence: ; Tel.: +86-13159752912
| |
Collapse
|
4
|
Harari A, Zoltsman G, Levin T, Rosenzweig R. Hsp104 N-terminal domain interaction with substrates plays a regulatory role in protein disaggregation. FEBS J 2022; 289:5359-5377. [PMID: 35305079 PMCID: PMC9541529 DOI: 10.1111/febs.16441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/01/2022] [Accepted: 03/17/2022] [Indexed: 01/19/2023]
Abstract
Heat shock protein 104 (Hsp104) protein disaggregases are powerful molecular machines that harness the energy derived from ATP binding and hydrolysis to disaggregate a wide range of protein aggregates and amyloids, as well as to assist in yeast prion propagation. Little is known, however, about how Hsp104 chaperones recognize such a diversity of substrates, or indeed the contribution of the substrate‐binding N‐terminal domain (NTD) to Hsp104 function. Herein, we present a NMR spectroscopy study, which structurally characterizes the Hsp104 NTD‐substrate interaction. We show that the NTD includes a substrate‐binding groove that specifically recognizes exposed hydrophobic stretches in unfolded, misfolded, amyloid and prion substrates of Hsp104. In addition, we find that the NTD itself has chaperoning activities which help to protect the exposed hydrophobic regions of its substrates from further misfolding and aggregation, thereby priming them for threading through the Hsp104 central channel. We further demonstrate that mutations to this substrate‐binding groove abolish Hsp104 activation by client proteins and keep the chaperone in a partially inhibited state. The Hsp104 variant with these mutations also exhibited significantly reduced disaggregation activity and cell survival at extreme temperatures. Together, our findings provide both a detailed characterization of the NTD‐substrate complex and insight into the functional regulatory role of the NTD in protein disaggregation and yeast thermotolerance.
Collapse
Affiliation(s)
- Anna Harari
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Guy Zoltsman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Levin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rina Rosenzweig
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Nakagawa Y, Shen HCH, Komi Y, Sugiyama S, Kurinomaru T, Tomabechi Y, Krayukhina E, Okamoto K, Yokoyama T, Shirouzu M, Uchiyama S, Inaba M, Niwa T, Sako Y, Taguchi H, Tanaka M. Amyloid conformation-dependent disaggregation in a reconstituted yeast prion system. Nat Chem Biol 2022; 18:321-331. [PMID: 35177839 DOI: 10.1038/s41589-021-00951-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 11/23/2021] [Indexed: 01/17/2023]
Abstract
Disaggregation of amyloid fibrils is a fundamental biological process required for amyloid propagation. However, due to the lack of experimental systems, the molecular mechanism of how amyloid is disaggregated by cellular factors remains poorly understood. Here, we established a robust in vitro reconstituted system of yeast prion propagation and found that heat-shock protein 104 (Hsp104), Ssa1 and Sis1 chaperones are essential for efficient disaggregation of Sup35 amyloid. Real-time imaging of single-molecule fluorescence coupled with the reconstitution system revealed that amyloid disaggregation is achieved by ordered, timely binding of the chaperones to amyloid. Remarkably, we uncovered two distinct prion strain conformation-dependent modes of disaggregation, fragmentation and dissolution. We characterized distinct chaperone dynamics in each mode and found that transient, repeated binding of Hsp104 to the same site of amyloid results in fragmentation. These findings provide a physical foundation for otherwise puzzling in vivo observations and for therapeutic development for amyloid-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoshiko Nakagawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Saitama, Japan
| | - Howard C-H Shen
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Saitama, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Komi
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Saitama, Japan
| | - Shinju Sugiyama
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Saitama, Japan
| | | | - Yuri Tomabechi
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | | | - Kenji Okamoto
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Takeshi Yokoyama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Susumu Uchiyama
- Research Department, U-Medico Inc., Suita, Japan.,Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan.,Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Japan
| | - Megumi Inaba
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tatsuya Niwa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan. .,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Saitama, Japan. .,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
6
|
Fatima K, Naqvi F, Younas H. A Review: Molecular Chaperone-mediated Folding, Unfolding and Disaggregation of Expressed Recombinant Proteins. Cell Biochem Biophys 2021; 79:153-174. [PMID: 33634426 DOI: 10.1007/s12013-021-00970-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022]
Abstract
The advancements in biotechnology over time have led to an increase in the demand of pure, soluble and functionally active proteins. Recombinant protein production has thus been employed to obtain high expression of purified proteins in bulk. E. coli is considered as the most desirable host for recombinant protein production due to its inexpensive and fast cultivation, simple nutritional requirements and known genetics. Despite all these benefits, recombinant protein production often comes with drawbacks, such as, the most common being the formation of inclusion bodies due to improper protein folding. Consequently, this can lead to the loss of the structure-function relationship of a protein. Apart from various strategies, one major strategy to resolve this issue is the use of molecular chaperones that act as folding modulators for proteins. Molecular chaperones assist newly synthesized, aggregated or misfolded proteins to fold into their native conformations. Chaperones have been widely used to improve the expression of various proteins which are otherwise difficult to produce in E. coli. Here, we discuss the structure, function, and role of major E. coli molecular chaperones in recombinant technology such as trigger factor, GroEL, DnaK and ClpB.
Collapse
Affiliation(s)
- Komal Fatima
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Fatima Naqvi
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Hooria Younas
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan.
| |
Collapse
|
7
|
Zininga T, Shonhai A. Small Molecule Inhibitors Targeting the Heat Shock Protein System of Human Obligate Protozoan Parasites. Int J Mol Sci 2019; 20:E5930. [PMID: 31775392 PMCID: PMC6929125 DOI: 10.3390/ijms20235930] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Obligate protozoan parasites of the kinetoplastids and apicomplexa infect human cells to complete their life cycles. Some of the members of these groups of parasites develop in at least two systems, the human host and the insect vector. Survival under the varied physiological conditions associated with the human host and in the arthropod vectors requires the parasites to modulate their metabolic complement in order to meet the prevailing conditions. One of the key features of these parasites essential for their survival and host infectivity is timely expression of various proteins. Even more importantly is the need to keep their proteome functional by maintaining its functional capabilities in the wake of physiological changes and host immune responses. For this reason, molecular chaperones (also called heat shock proteins)-whose role is to facilitate proteostasis-play an important role in the survival of these parasites. Heat shock protein 90 (Hsp90) and Hsp70 are prominent molecular chaperones that are generally induced in response to physiological stress. Both Hsp90 and Hsp70 members are functionally regulated by nucleotides. In addition, Hsp70 and Hsp90 cooperate to facilitate folding of some key proteins implicated in cellular development. In addition, Hsp90 and Hsp70 individually interact with other accessory proteins (co-chaperones) that regulate their functions. The dependency of these proteins on nucleotide for their chaperone function presents an Achille's heel, as inhibitors that mimic ATP are amongst potential therapeutic agents targeting their function in obligate intracellular human parasites. Most of the promising small molecule inhibitors of parasitic heat shock proteins are either antibiotics or anticancer agents, whose repurposing against parasitic infections holds prospects. Both cancer cells and obligate human parasites depend upon a robust protein quality control system to ensure their survival, and hence, both employ a competent heat shock machinery to this end. Furthermore, some inhibitors that target chaperone and co-chaperone networks also offer promising prospects as antiparasitic agents. The current review highlights the progress made so far in design and application of small molecule inhibitors against obligate intracellular human parasites of the kinetoplastida and apicomplexan kingdoms.
Collapse
Affiliation(s)
| | - Addmore Shonhai
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou 0950, South Africa;
| |
Collapse
|
8
|
Schieferdecker A, Wendler P. Structural Mapping of Missense Mutations in the Pex1/Pex6 Complex. Int J Mol Sci 2019; 20:ijms20153756. [PMID: 31374812 PMCID: PMC6696164 DOI: 10.3390/ijms20153756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/05/2023] Open
Abstract
Peroxisome biogenesis disorders (PBDs) are nontreatable hereditary diseases with a broad range of severity. Approximately 65% of patients are affected by mutations in the peroxins Pex1 and Pex6. The proteins form the heteromeric Pex1/Pex6 complex, which is important for protein import into peroxisomes. To date, no structural data are available for this AAA+ ATPase complex. However, a wealth of information can be transferred from low-resolution structures of the yeast scPex1/scPex6 complex and homologous, well-characterized AAA+ ATPases. We review the abundant records of missense mutations described in PBD patients with the aim to classify and rationalize them by mapping them onto a homology model of the human Pex1/Pex6 complex. Several mutations concern functionally conserved residues that are implied in ATP hydrolysis and substrate processing. Contrary to fold destabilizing mutations, patients suffering from function-impairing mutations may not benefit from stabilizing agents, which have been reported as potential therapeutics for PBD patients.
Collapse
Affiliation(s)
- Anne Schieferdecker
- Institute of Biochemistry and Biology, University of Potsdam, D-14476 Potsdam, Germany
| | - Petra Wendler
- Institute of Biochemistry and Biology, University of Potsdam, D-14476 Potsdam, Germany.
| |
Collapse
|
9
|
Chamera T, Kłosowska A, Janta A, Wyszkowski H, Obuchowski I, Gumowski K, Liberek K. Selective Hsp70-Dependent Docking of Hsp104 to Protein Aggregates Protects the Cell from the Toxicity of the Disaggregase. J Mol Biol 2019; 431:2180-2196. [PMID: 31026451 DOI: 10.1016/j.jmb.2019.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 02/01/2023]
Abstract
Hsp104 is a yeast chaperone that rescues misfolded proteins from aggregates associated with proteotoxic stress and aging. Hsp104 consists of N-terminal domain, regulatory M-domain and two ATPase domains, assembled into a spiral-shaped hexamer. Protein disaggregation involves polypeptide extraction from an aggregate and its translocation through the central channel. This process relies on Hsp104 cooperation with the Hsp70 chaperone, which also plays important role in regulation of the disaggregase. Although Hsp104 protein-unfolding activity enables cells to survive stress, when uncontrolled, it becomes toxic to the cell. In this work, we investigated the significance of the interaction between Hsp70 and the M-domain of Hsp104 for functioning of the disaggregation system. We identified phenylalanine at position 508 in Hsp104 to be the key site of interaction with Hsp70. Disruption of this site makes Hsp104 unable to bind protein aggregates and to confer tolerance in yeast cells. The use of this Hsp104 variant demonstrates that Hsp70 allows successful initiation of disaggregation only as long as it is able to interact with the disaggregase. As reported previously, this interaction causes release of the M-domain-driven repression of Hsp104. Now we reveal that, apart from this allosteric effect, the interaction between the chaperone partners itself contributes to effective initiation of disaggregation and plays important role in cell protection against Hsp104-induced toxicity. Interaction with Hsp70 shifts Hsp104 substrate specificity from non-aggregated, disordered substrates toward protein aggregates. Accordingly, Hsp70-mediated sequestering of the Hsp104 unfoldase in aggregates makes it less toxic and more productive.
Collapse
Affiliation(s)
- Tomasz Chamera
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Agnieszka Kłosowska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland.
| | - Anna Janta
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Hubert Wyszkowski
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Igor Obuchowski
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Krzysztof Gumowski
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland.
| |
Collapse
|
10
|
Potential Applications of the Escherichia coli Heat Shock Response in Synthetic Biology. Trends Biotechnol 2018; 36:186-198. [DOI: 10.1016/j.tibtech.2017.10.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 01/06/2023]
|